Читаем Техника и вооружение 2005 09 полностью

В основу построения системы управления полетом ракеты был положен принцип наведения на цель по лучу самолетной РЛС наведения. Станция наведения перехватчика «Изумруд-2» в процессе работы создавала с помощью кодированных импульсов систему координат управления ракетой. Аппаратура радиоуправления ракетой представляла собой два идентичных независимых канала, которые обеспечивали выработку необходимых сигналов управления движением ракеты в двух взаимно перпендикулярных плоскостях. Настолько малогабаритная аппаратура управления разрабатывалась впервые. Вначале предусматривалось применение пальчиковых ламп, затем перешли на лампы типа «желудь». От объемного монтажа перешли к печатным схемам. На ракете использовались пневматические рулевые машинки. При этом обратная связь по сигналу управления осуществлялась двумя двухстепенными гироскопами и потенциометрическими линейками. Автопилота не было, а о возможности использования шарнирного момента от аэродинамических сил для осуществления обратной связи по сигналу управления еще даже не догадывались.

В процессе атаки летчик осуществлял управление самолетом таким образом, чтобы отметка от цели оказалась в центре экрана индикатора бортовой РЛС. Далее он переводил радиолокатор в режим автоматического сопровождения и при достижении разрешенной дальности производил пуск. До момента попадания в цель требовалось удерживать отметку от цели в пределах экрана РЛС. В процессе наведения аппаратура ракеты осуществляла прием сигнала РЛС «Изумруд-2», работающей в режиме конического сканирования. При отходе ракеты от равносигнальной зоны амплитуда сигнала менялась в соответствии с величиной отклонения. Осуществляемое самолетной РЛС модулирование сигнала обеспечивало определение направления отклонения от равносигнальной зоны (вверх-вниз, вправо-влево). Вырабатываемый приемной радиоаппаратурой сигнал рассогласования поступал на элементы автопилота, обеспечивая возвращение ракеты в равносигнальную зону. Для стабилизации по крену задействовался трехстепенной гироскоп. При отклонении по крену корпус ракеты как бы проворачивался относительно гироскопа и соединенные с ним элементами кинематики элероны, установленные на каждой консоли крыла, отклонялись для возвращения ракеты в исходное положение.

Для ракеты ШМ использовали аэродинамическая схему «утка» с крестообразно расположенными крыльями и рулями. Особую роль в подобном выборе сыграло то, что при относительно небольших размерах рулей обеспечивалась необходимая маневренность ракеты и ее аэродинамическая устойчивость при различных режимах полета.

Крылья ракеты имели форму, близкую к треугольной. В начале 1950-х гг. они характеризовались как «ромбовидные»: передняя кромка имела положительную стреловидность 60°, задняя – отрицательную 12°. Предложенная группой аэродинамиков ЦАГИ во главе с П.П. Красильщиковым, эта форма крыльев малого удлинения (Я=1.5) нашла широкое применение на советских ракетах тех лет. Напротив, попытки использования ромбовидных крыльев на пилотируемых самолетах (Як-100, цыбинский РСР) не увенчались успехом из-за недостаточных несущих свойств на малых скоростях.

Конструктивно корпус ракеты состоял из пяти отсеков, которые стыковались с помощью резьбовых соединений, шпилек и винтов. Основными материалами конструкции стали широко применявшиеся в промышленности алюминиевые и магниевые сплавы. Лишь двигатель ракеты изготавливался из стали.

Ракета РС-1У («изделие ШМ»)

В носовой части размещался радиолокационный неконтактный взрыватель (НВ) АР-10 с характерной кольцевой антенной, а за ним – осколочно-фугасная боевая часть. Далее находился отсек управления. Диаметрально противоположные рули устанавливались на общих осях. Для упрощения пространственной развязки осей расположенные в перпендикулярных плоскостях пары рулей сдвинули друг относительно друга вдоль длины ракеты. Интересной особенностью ШМ стали рулевые машинки, связанные с рулевыми поверхностями (рулями и элеронами) своим подвижным корпусом, в то время как их штоки были зафиксированы на корпусе ракеты. Для задействования машинок каналов тангажа и курса воздух и электрические сигналы подавались во второй отсек по трубопроводу и кабелям, проложенным в установленном в низу корпуса ракеты гаргроте.

Третий отсек представлял собой твердотопливный ракетный двигатель с двумя соплами. Между соплами двигателя в четвертом отсеке находилась электрическая батарея. Пятый отсек служил для размещения аппаратуры радиоуправления и завершался штыревой приемной антенной. На законцовках крыльев устанавливались трассеры.

Перейти на страницу:

Похожие книги

XX век флота. Трагедия фатальных ошибок
XX век флота. Трагедия фатальных ошибок

Главная книга ведущего историка флота. Самый полемический и парадоксальный взгляд на развитие ВМС в XX веке. Опровержение самых расхожих «военно-морских» мифов – например, знаете ли вы, что вопреки рассказам очевидцев японцы в Цусимском сражении стреляли реже, чем русские, а наибольшие потери британскому флоту во время Фолклендской войны нанесли невзорвавшиеся бомбы и ракеты?Говорят, что генералы «всегда готовятся к прошедшей войне», но адмиралы в этом отношении ничуть не лучше – военно-морская тактика в XX столетии постоянно отставала от научно-технической революции. Хотя флот по праву считается самым высокотехнологичным видом вооруженных сил и развивался гораздо быстрее армии и даже авиации (именно моряки первыми начали использовать такие новинки, как скорострельные орудия, радары, ядерные силовые установки и многое другое), тактические взгляды адмиралов слишком часто оказывались покрыты плесенью, что приводило к трагическим последствиям. Большинство морских сражений XX века при ближайшем рассмотрении предстают трагикомедией вопиющей некомпетентности, непростительных промахов и нелепых просчетов. Но эта книга – больше чем простая «работа над ошибками» и анализ упущенных возможностей. Это не только урок истории, но еще и прогноз на будущее.

Александр Геннадьевич Больных

История / Военное дело, военная техника и вооружение / Прочая документальная литература / Образование и наука / Документальное