Казалось бы, предел совершенствования «классических» полноприводных трансмиссий уже достигнут, но, тем не менее, эффективность существующих автомобилей высокой проходимости была недостаточной. Особенно сильно это проявлялось в многоосных машинах, в которых с увеличением числа ведущих колес трансмиссия становилась все более сложной и громоздкой, а потери мощности в ней возрастали.
Трансмиссии современных полноприводных автомобилей выполнены по двум основным схемам – блокированной и дифференциальной. Блокированная трансмиссия характеризуется жесткой связью всех ведущих колес, а дифференциальная – распределением мощности между ведущими мостами и колесами через дифференциальный механизм. Существуют также различные комбинированные схемы, в которых часть колес объединена дифференциальной связью, часть – блокированной (например, при блокировке нескольких дифференциалов). Их всех объединяет одна особенность – невозможность принудительного изменения подводимой мощности на одном или нескольких колесах или мостах независимо от других. Но для чего это нужно?
Как известно, автомобиль способен двигаться лишь при условии, что развиваемая его ведущими колесами суммарная сила тяги превышает суммарную силу сопротивления движению. Следовательно, для повышения проходимости автомобиля необходимо решить две задачи – повысить его тяговые свойства и снизить затраты мощности на движение. Исследованиями доказано, что эти задачи взаимосвязаны: режим движения с минимальными потерями мощности эквивалентен режиму движения с максимально возможной силой тяги при заданной величине подводимой мощности. Однако это условие выполняется только при определенном соотношении крутящих моментов, подводимых к ведущим колесам в каждый момент времени. Ведь для того, чтобы каждое ведущее колесо автомобиля развивало максимально возможную силу тяги в любых условиях, необходимо контролировать непрерывно изменяющиеся сцепные свойства каждого колеса и подводить к нему крутящий момент строго определенной величины, который колесо может реализовать в данных условиях. Очевидно, что для решения этой задачи необходимо иметь возможность подводить мощность к каждому колесу индивидуально, а также регулировать ее плавно и независимо от других колес, в соответствии с условиями движения, т.е. «гибко» перераспределять мощность в трансмиссии. Такие трансмиссии и получили название «гибких».
Построить «гибкую» трансмиссию на базе традиционной механической, реализовав индивидуальный привод каждого колеса, практически невозможно – предельное усложнение сведет на нет все преимущества такого привода. Между тем, трансмиссии с индивидуальным приводом колес существуют – это электрические и гидрообъемные. Именно они представляются исследователям базой для «гибких» трансмиссий, наиболее перспективной, прежде всего, для многоосных полноприводных автомобилей.
Можно возразить: ведь существуют еще различные фрикционные, вязкостные и другие муфты с электронным управлением, перераспределяющие мощность между ведущими мостами или колесами одного моста в зависимости от условий движения. Эти муфты сегодня все чаще применяются на легковых полноприводных автомобилях, придавая механическим трансмиссиям свойства «гибких». Действительно, эти устройства хорошо подходят для легковых автомобилей типа 4x4, но применение фрикционных муфт на тяжелых многоосных автомобилях лишь увеличит потери мощности в их и без того сложных трансмиссиях.
Для того чтобы эффективно управлять независимыми колесными приводами, необходима система управления, действующая по оптимальным законам управления. Эти законы требуется установить, разработать алгоритмы управления «гибкой» трансмиссией и ввести их в систему управления.
Таким образом, было обозначено направление развития полноприводных автомобилей, заключающееся в применении «гибких» трансмиссий. Но здесь предстояла еще большая исследовательская работа.
Идея создания «гибкой» трансмиссии для полноприводного автомобиля связана с научными исследованиями профессоров Ю.В. Пирковского и С.Б. Шухмана, изучавших сопротивление движению полноприводного автомобиля по твердой дороге и различным грунтам. Результаты их работ заложили основы научной школы, с которой тесно сотрудничали известные в этой области ученые – В.Ф. Платонов (НАТИ), М.П. Чистов (НИИИ-21), Н.Ф. Бочаров, А.А. Полунгян и Г.О. Котиев (МГТУ им. Н.Э. Баумана) и многие другие.
В начале 1990-х гг., в кризисное для российской науки время, эти исследования получили продолжение, когда в результате реорганизации НАМИ была основана небольшая научно-исследовательская фирма «НАМИ-Сервис». Ее руководителем стал С.Б. Шухман. Вскоре в коллектив новой фирмы вошли опытные инженеры отдела специальных автомобилей НАМИ – Е.И. Прочко и В.И. Соловьев. «НАМИ-Сервис» поддерживала тесные связи с ведущими научными организациями – МГТУ им. Н.Э. Баумана, НИИИ-21, МГТУ «МАМИ», НИЦИАМТ (автополигон НАМИ).