В области инфракрасной техники наибольшее внимание уделяется матричным фотоприемным устройствам, способным не только выделять теплоконтрастные объекты, но и распознавать их; фактически наметился переход от инфракрасных к тепловизионным ГСН. Расширяется спектр работы ГСН, причем не только в инфракрасном диапазоне. Инфракрасные системы 3-го поколения способны принимать сигналы в инфракрасном, оптическом и ультрафиолетовым диапазонах. Параллельно ведется совершенствование матричных приемников за счет увеличения количества чувствительных элементов и уменьшения их размеров при снижении уровня собственных шумов (полная аналогия развития коммерческих цифровых фотоаппаратов). Широкополосные ТГСН позволяют реализовать принцип «пустил – забыл» в любых погодных условиях, днем и ночью, обладают более высокой помехозащищенностью.
Продолжаются работы по улучшению «классических» полуактивных лазерных ГСН, не позволяющих распознавать образ цели и действующих исключительно на принципе приема отраженного от цели лазерного луча. В патенте US 8188411 В2 (заявлен в 2009 г., опубликован 29 мая 2012 г.) описана малогабаритная ГСН для ракет и артиллерийских снарядов с тремя линзами и оптическим фильтром. Описанный в патенте оптический блок фокусирует излучение лазера и отфильтровывает сигналы, образующиеся при интерференции, возникающей при проходе лазерного луча через прозрачный колпак ГСН.
Примером нестандартного подхода к реализации полуактивного лазерного наведения является ГСН УР APKWS II. Судя по ряду источников, она спроектирована на основе решения, защищенного патентом US 8390802 В2 (заявка подана в 2009 г., опубликован 5 марта 2013 г.). Особенностью данной ГСН является размещение линейных датчиков-приемников лазерного излучения на передних кромках передних аэродинамических поверхностей ракеты. Пространственное положение ракеты относительно цели вычисляется на основе показаний двух датчиков, установленных на противоположных аэродинамических поверхностях, т.е. методом пеленгации цели по отраженному лучу лазера.
Патент US 8164037 В2 (заявлен в 2009 г., опубликован 24 апреля 2012 г.) описывает ГСН, работающую на основе фокусирования лазерного и теплового излучения с его последующим разделением и перенаправлением на различные приемники. То есть, в патенте описана комбинированная полуактивная лазерная/ИК ГСН.
Ведутся работы по созданию многодиапазонных (ИК, оптический, радио) ГСН, выполненных в едином, подвижном относительно корпуса ракеты, блоке. Их особенностью является именно подвижность всего блока, в то время как в современных ГСН подвижными являются только чувствительные элементы и, иногда линзы, смонтированные внутри корпуса ракеты за неподвижным прозрачным обтекателем. Подобная ГСН описана патентом US 8259291 В2 (заявлен в 2009 г., опубликован 4 сентября 2012 г.).
Спутниковые навигационные системы (GPS) на малогабаритных УР служат, чаще всего, для коррекции полета ракеты на среднем участке траектории. Большинство автопилотов таких ракет построено на использовании трехстепенного свободного гироскопа, обладающего большими погрешностями, хотя в последние годы наблюдается тенденция перехода к немеханическим гироскопам, у которых, однако, ошибки, как функция от времени, нарастают еще быстрее. На первом этапе GPS применялась только для коррекции автопилота. Позднее были разработаны комбинированные слабо- и жесткосвязанные инерциально-спутниковые навигационные системы.
В слабосвязанных системах инерциальный и спутниковый каналы работают параллельно, и их сигналы могут быть использованы для управления полетом как совместно, так и независимо друг от друга. В жесткосвязанных системах имеется только один выходной сигнал, обработка информации от гироскопических датчиков и спутников происходит внутри системы. Жестко связанные инерциально-спутниковые навигационные системы считаются наиболее перспективными, так как обеспечивают большую точность, хотя и не лишены недостатков – большая стоимость и большая вероятность отказа из-за невозможности работы в случае выхода из строя инерциального или спутникового канала.
Инерциально-спутниковое наведение приобретает все большую актуальность, учитывая тенденцию увеличения дальности стрельбы. К примеру, если ранее для ПТУР дальность стрельбы 5-8 км считалась большой, то перспективные ракеты проектируются в расчете на дальность стрельбы 15-16 км.
Ракеты семейства «Гидра» калибра 70 мм (2,75 дюйма) с раскрывающимся после пуска оперением являются одним из самых распространенных авиационных средств поражения. Они входят в ассортимент вооружения большинства вертолетов и самолетов западного производства. Ракеты выпускаются с боевыми частями различного типа – от дымовых и осветительных до осколочных и бронебойных.