Даже без таких прорывов прогресс идет быстро, и надежды высоки. Разрабатываются роботы для полетов на Марс, для помощи медицинским работникам и даже для создания роботов{131}
. Однажды могут появиться полчища крошечных роботов под управлением облачного ИИ, обеспечивающие интеллектуальные приложения на централизованных серверах данными, необходимыми для координации и распределения ресурсов. ИИ уже проникает в профессиональные области, требующие обширных знаний, такие как журналистика, медицина, бухгалтерия и юриспруденция. Даже если юристы и врачи не будут заменены полностью, интеллектуальные приложения, способные синтезировать и анализировать примеры из практики и диагностические снимки, изменят эти профессии. А пока ИИ активно улучшает себя, инвестиции в индустрию робототехники в 2019 году, по некоторым оценкам, превысят 135 млрд долл., что почти в два раза больше инвестиций 2015 года{132}. Автомобили не только станут ездить без водителей, но и, скорее всего, будут производиться без участия человека, особенно если учесть, что автомобильная промышленность стоит на первом месте по числу приобретаемых роботов (рис. 17){133}.Рисунок 17. Число многоцелевых промышленных роботов (всех типов) на 10 тыс. рабочих в автомобильной и всех остальных индустриях, 2014 г.
Источник: Pittman (2016)
Во многих сферах экономики повышение уровня автоматизации может привести к созданию новых типов рабочих мест и исчезновению старых. Например, автоматизация грузоперевозок может привести к сокращению рабочих мест в сфере логистики{134}
.Усиление влияния ИИ и робототехники на рынок труда ожидается как в развитых, так и в развивающихся регионах. В США риску автоматизации подвергается от 10 % до 50 % всех рабочих мест{135}{136}
. В Китае компания Foxconn за два года заменила роботами 60 тыс. рабочих на фабриках{137}. Автоматизация может отрицательно сказываться на индустриализации в развивающихся странах, уменьшая преимущества дешевой рабочей силы: если раньше многие производства было выгодно размещать в развивающихся странах, то теперь происходит отказ от этой практики{138}.Последствия для глобальной экономики обширны и непредсказуемы. Экономисты создают возможные экономические модели, учитывающие автоматизацию труда, тогда как образовательные учреждения пытаются предсказать, какие навыки потребуются завтрашним работникам{139}
. Необходимость многостороннего взаимодействия и сотрудничества никогда не была выше, чем сейчас, и, чтобы удовлетворить ее, законодатели, руководители коммерческих и общественных организаций должны искать компромиссы между экономическими и социальными целями. Внимания требуют также вопросы безопасности и уязвимости ИИ. Хотя специализированный искусственный интеллект предлагает обществу огромные возможности, его можно обмануть, взломать или ввести в заблуждение. Необходимо убедиться, что решения, принимаемые машинами, не подвержены посторонним влияниям и не могут быть изменены посредством кибератак.В основе этой важнейшей проблемы лежит другая, имеющая еще более широкие последствия: механизмы принятия решений, используемые алгоритмами машинного обучения, часто остаются неясными для людей-разработчиков, что поднимает вопрос о приемлемости делегирования власти этим алгоритмам. В мире людей доверие глубоко связано с обоснованием решений. Например, даже если ИИ будет лучше людей прогнозировать, кто из заключенных снова нарушит закон или кто из заемщиков не выплатит кредит, мы не будем удовлетворены принимаемыми машинами решениями, если они не смогут объяснить их. Это особенно справедливо для алгоритмов, проявляющих предвзятость после обработки наборов данных, отражающих человеческую предвзятость. Они могут выявлять полезные закономерности, но без машинного понимания мы будем считать их решения некорректными. В первую очередь нам необходимо заняться следующими вопросами: