Подчеркнем еще раз главное отличие: человеческий мозг обладает способностью, какой компьютер принципиально лишен, — мозг способен выносить
суждения, основанные на
понимании. Именно это различие и приводит к следствиям, описанным в общем виде в вышеприведенных простых рассуждениях (а также в рассуждениях относительно шахматной задачи, представленной на рис.
1.7в
§1.15). Сознательное понимание — процесс сравнительно медленный, однако он может значительно сократить число альтернатив, требующих серьезного рассмотрения, существенно увеличив таким образом
эффективнуюглубину вычисления. (По достижении определенной точки необходимость в рассмотрении отдельных альтернативных вариантов и вовсе отпадает.) И вообще, всем, кому интересно, чего компьютеры могут достичь в будущем, я, думается, могу дать хорошую подсказку: попытайтесь ответить на вопрос, требуется ли для выполнения той или иной задачи подлинное понимание. Многие вещи в нашей повседневной жизни не требуют для своего выполнения какого-то особого понимания, и вполне возможно, что с ними отлично справятся роботы с компьютерным управлением. Уже сейчас существуют управляемые искусственными нейронными сетями машины, успешно выполняющие такого рода задачи. Например, машины научились достаточно хорошо распознавать лица, производить геологическую разведку, находить по звуку неполадки в работе различных механизмов, разоблачать мошенничества с кредитными картами и т.д.
{99}Там, где применение таких машин возможно, их эффективность в общем случае приближается к средней эффективности экспертов-людей (а порой и превосходит ее). Однако вследствие особенностей необходимого в данном случае «восходящего» программирования, мы не увидим здесь того уровня мощной машинной «компетентности», какой присущ нисходящим системам (скажем, шахматным компьютерам), или того, что — еще более впечатляюще — демонстрируют компьютеры при выполнении обыкновенных численных расчетов, в каковой области даже лучшие вычислители-люди и близко не подходят к производительности средних по сегодняшним меркам компьютеров. Что же касается задач, с которыми эффективно справляются искусственные нейронные сети (восходящего типа), то задействуемое в выполнении таких задач
людьмипонимание, если честно, едва ли превышает способности компьютеров, поэтому в таких областях от компьютеров можно ожидать некоторого ограниченного прогресса. Там, где компьютерные программы имеют по большей части нисходящую организацию (прямые расчеты, шахматные программы, научные вычисления), компьютеры способны достичь огромной мощности и эффективности. В этих случаях компьютер также не нуждается в подлинном понимании выполняемых им действий, только здесь все необходимое понимание предварительно вложено в программу человеком (см.
§1.21).
Следует упомянуть и о том, что в системах нисходящего типа очень часты компьютерные ошибки, возникающие из-за ошибок в программах. Впрочем, такая ситуация является результатом человеческой ошибки, а это совершенно иное дело. Существуют — и порой даже приносят реальную пользу — автоматические системы исправления ошибок, однако они способны выловить далеко не все ошибки, некоторые оказываются им не по зубам.
Опасность чрезмерно доверчивого отношения к системам с полным компьютерным управлением хорошо иллюстрируется ситуациями, в которых упомянутая система в течение долгого времени работает вполне приемлемо, создавая, возможно, у человека
впечатление, что она понимает, что делает. И вдруг неожиданно она выкидывает нечто совершенно безумное, что недвусмысленно показывает, что никакого подлинного понимания в ее действиях никогда не было (как в случае с неспособностью компьютера «Deep Thought» решить шахматную задачу, изображенную на рис.
1.7). Так что никогда не теряйте бдительности. Вооруженные знанием того, что «понимание» просто-напросто не является вычислительным качеством, мы всегда должны помнить: никакой робот с компьютерным управлением таким качеством ни в коей мере обладать не может.