Читаем Тени разума. В поисках науки о сознании полностью

Для меня наиболее впечатляющим примером эффективности математики является общая теория относительности Эйнштейна. Нередко можно услышать, что физики всего лишь подмечают время от времени, где именно на этот раз математические концепции оказались хорошо применимыми к физическому поведению. Утверждают, соответственно, что физики, как правило, направляют свои интересы в сторону тех областей, где имеющиеся математические описания работают; таким образом, нет ничего удивительного в том, что математические и физические описания так хорошо друг с другом уживаются. Мне, впрочем, представляется, что авторы подобных заявлений, что называется, попадают пальцем в небо. Они просто никак не объясняют то фундаментальное единство, которое, как показывает, в частности, теория Эйнштейна, существует между математикой и устройством мироздания. Когда Эйнштейн разрабатывал свою теорию, никакой действительной необходимости в ней, с экспериментальной точки зрения, не было. Ньютоновская теория тяготения держалась уже почти 250 лет и достигла за это время потрясающей точности (погрешность порядка одной десятимиллионной — одно это является достаточно убедительным доказательством глубинной математической основы физической реальности). Да, в движении планеты Меркурий была замечена аномалия, однако это, разумеется, не послужило поводом для отказа от схемы Ньютона. И все же Эйнштейн счел, что можно добиться лучшего результата, если изменить саму основу теории тяготения. В первые годы после того, как Эйнштейн обнародовал теорию относительности, в поддержку ее можно было привести лишь несколько наблюдаемых эффектов, а преимущество над теорией Ньютона в точности было крайне незначительным. Теперь же, по прошествии 80 лет, общая точность теории относительности возросла в миллионы раз. Эйнштейн не просто «подметил» повторяющиеся особенности поведения физических объектов. Он обнаружил фундаментальную математическую субструктуру, реально существующую и до тех пор скрытую в глубинах мироздания. Более того, он искал вовсе не какие-то физические феномены, которые могли бы подойти под красивую теорию. Он искал и нашел точное математическое соотношение, заложенное в самой структуре пространства и времени, — наиболее фундаментальное из всех физических понятий.

В основе всех других успешных теорий элементарных физических процессов всегда лежит некая математическая структура, которая оказывается не только чрезвычайно точной, но и весьма хитроумной математически. (А чтобы читатель не подумал, что «ниспровержение» прежних физических представлений — например, теории Ньютона — каким-то образом эти представления обесценивает и лишает смысла, спешу уверить, что это ни в коем случае не так. Если прежние идеи были достаточно обоснованны — что можно сказать, например, о теориях Галилея или того же Ньютона, — то они и дальше остаются в добром здравии и находят в новой схеме свое место.) Кроме того, и сама математика, в своем стремлении как можно точнее описать поведение природных объектов, находит для себя немало полезного, порой неочевидного и неожиданного. И квантовая теория (тесные взаимоотношения которой с математикой — через посредство комплексных чисел — очевидны, надеюсь, даже из того краткого обзора предмета, что попал на эти страницы), и общая теория относительности, и электромагнитные уравнения Максвелла — все они дали весьма ощутимый толчок развитию математики. Причем это верно не только для относительно новых теорий, что я перечислил. Не менее верно это и для теорий, куда более отдаленных от нас во времени, — например, для ньютоновской механики (давшей нам математический анализ) или древнегреческого анализа структуры пространства (которому мы обязаны самим понятием геометрии). Необычайная точность математики в описании физического поведения (например, точность квантовой электродинамики, достигающая одиннадцатого или даже двенадцатого знака после запятой) не раз удивляла ученых. Однако на этом загадки не заканчиваются. Концепции, скрывающиеся в физических процессах, обладают чрезвычайной глубиной, тонкостью и математической плодотворностью. Об этом люди зачастую и не подозревают — если, конечно, они не математики, вплотную занимающиеся соответствующей проблемой.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия