Читаем Тени разума. В поисках науки о сознании полностью

По причине такого расхождения во мнениях относительно того, какой из миров на рис. 8.1следует считать первичным, а какие вторичными, я порекомендовал бы взглянуть на стрелки несколько иначе. Существенным качеством стрелок на рис. 8.1является не столько их направление, сколько тот факт, что каждая представляет такое соответствие, при котором лишь малаяобласть одного мира «порождает» весьследующий мир целиком. Что касается первой стрелки: мне много раз указывали на то, что огромная часть мира математики (если судить по результатам деятельности самих математиков) если и имеет какое-то отношение к действительному физическому поведению, то весьма незначительное. Получите: в основе структуры нашей физической Вселенной может лежать лишь крохотная часть платоновского мира. Аналогичным образом, вторая стрелка символизирует тот факт, что существование нашего ментального мира есть продукт очень малой части мира физического — той части, где имеются в точности те условия, что необходимы для возникновения сознания, как, например, в мозге человека. Точно так же третья стрелка захватывает весьма небольшую область мира ментальной активности, а именно ту, что «заведует» абсолютными и вневременными вопросами — в особенности, математической истиной. Наша с вами ментальная жизнь проходит, по большей части, совсем в других местах.

Есть нечто парадоксальное в этих соответствиях: каждый мир, похоже, «возникает» всего лишь из крохотной части того мира, что ему предшествует. На рис. 8.1я постарался этот парадокс подчеркнуть. Впрочем, я рассматриваю стрелки не как утверждения о каких-то действительных «возникновениях», а просто как символы имеющихся соответствий, поскольку не хочу умножать предрассудки, и без того окружающие вопрос о том, какой из миров следует считать первичным, вторичным или третичным, если там вообще уместно такое «старшинство».

И все же полностью избежать предрассудков (или просто предвзятости) на рис. 8.1мне не удалось. Если верить рисунку, то следует предположить, что целыймир отражается частью (причем малой) своего предшественника. Возможно, мои предрассудки ошибочны. Возможно, какие-то аспекты поведения физического мира невозможно описать в точных математических терминах; возможно, какая-то ментальная жизнь не связана неразрывно с физическими структурами (такими, как мозг); возможно также, что существуют математические истины, которые  принципиально недоступнычеловеческому пониманию или интуиции. Для того, чтобы учесть все эти альтернативные возможности, рисунок 8.1следует перерисовать таким образом, чтобы какие-то из миров (или все) охватывались стрелкой из предыдущего мира не полностью.

В первой части я большое внимание уделил некоторым следствиям из знаменитой теоремы Гёделя о неполноте. Кто-то из читателей, возможно, придерживается мнения, что теорема Гёделя как раз и утверждает, что в мире платоновских математических истин имеются области, принципиально недоступные человеческому пониманию или интуиции. Надеюсь, что мои доказательства ясно показали, что это не так {108}. Те математические предположения, что упоминаются в остроумном доказательстве Гёделя, человеку вполне доступны — при условии, что они построены в рамках математических (формальных) систем, которые уже приняты нами как достоверные средства оценки математической истинности. Из доказательства Гёделя отнюдь не следует, что существуют недоступные математические истины. Из него следует лишь, что человеческая интуиция не укладывается ни в рамки формальной аргументации, ни в рамки вычислительных процедур. Более того, из него недвусмысленно следует само существование платоновского математического мира. Математическая истина не определяется произвольным образом по правилам некоей «искусственной» формальной системы, но имеет абсолютный характер и находится вне любой такой системы устанавливаемых правил. Поддержка платоновского мировоззрения (в противовес формализму) была одной из важных причин, побудивших Гёделя взяться за работу. С другой стороны, рассуждения Гёделя могут служить иллюстрацией глубокой непостижимости нашего математического восприятия. Для того чтобы такое восприятие возникло, мы не просто «вычисляем»; тут на самом глубинном уровне задействовано что-то еще — что-то, что было бы невозможно без собственно осознания, которое, в конечном счете, и формирует мир восприятий.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия