Выше мы предположили, что сама наша система (независимо от того, живая она или нет) представляет собой нечто вроде робота
с компьютерным управлением, т.е. все ее самомодификационные процедуры являются целиком вычислительными. (Я пользуюсь здесь термином «робот» исключительно для того, чтобы подчеркнуть то обстоятельство, что нашу систему следует рассматривать как некую самостоятельную, целиком и полностью вычислительную сущность, находящуюся во взаимодействии со своим окружением. Я вовсе не подразумеваю, что она непременно представляет собой какое бы то ни было механическое устройство, целенаправленно сконструированное человеком. Такой системой, если верить A или B, может оказаться развивающееся человеческое существо, а может и в самом деле какой-то искусственно созданный объект.) Итак, мы полагаем, что внутренний фактор является полностью вычислительным. Необходимо установить, является ли вычислительным также и внешний фактор, вносимый окружением, — иначе говоря, возможно ли построить эффективную численную модель этого самого окружения как в искусственном (т.е. когда окружение неким искусственным образом контролируется учителем-человеком), так и в естественном случае (когда высшим авторитетом является давление естественного отбора). В каждом случае конкретные внутренние правила, в соответствии с которыми система обучения робота модифицирует его поведение, должны быть составлены так, чтобы тем или иным образом реагировать на конкретные сигналы, посредством которых окружение будет сообщать системе о том, как следует оценивать качество ее функционирования в предыдущем рабочем цикле.Вопрос о возможности моделирования окружения в искусственном случае (иными словами, о возможности численного моделирования поведения человека-учителя) представляет собой тот самый общий вопрос, ответ на который мы пытаемся найти вот уже в который раз. В рамках гипотез A
или B, следствия из которых мы рассматриваем в настоящий момент, допускается, что эффективное моделирование в этом случае и в самом деле возможно, по крайней мере, в принципе. В конце концов, цель нашего исследования состоит именно в выяснении общего правдоподобия этого допущения. Поэтому, вместе с допущением о вычислительной природе нашего робота, допустим также, что его окружение также вычислимо. В результате мы получаем объединенную систему, состоящую из робота и его обучающего окружения, которая, в принципе, допускает эффективное численное моделирование, т.е. окружение не дает никаких потенциальных оправданий невычислительному поведению вычислительного робота.Иногда можно услышать утверждение, что нашим преимуществом перед компьютерами мы обязаны тому факту, что люди образуют сообщество
, внутри которого происходит непрерывное общение между индивидуумами. Согласно этому утверждению, отдельного человека можно рассматривать как вычислительную систему, тогда как сообщество людей представляет собой уже нечто большее. То же относится и, в частности, к математическому сообществу и отдельным математикам — сообщество может вести себя невычислительным образом, в то время как отдельные математики такой способностью не обладают. На мой взгляд, это утверждение лишено всякого смысла. В самом деле, представьте себе аналогичное сообщество непрерывно общающихся между собой компьютеров. Подобное «сообщество» в целом является точно такой же вычислительной системой; деятельность его, если есть такое желание, можно смоделировать и на одном-единственном компьютере. Разумеется, вследствие одного только количественного превосходства, сообщество составит гораздо более мощную вычислительную систему, нежели каждый из индивидуумов в отдельности, однако принципиальной разницы между ними нет. Известно, что на нашей планете проживает более 5 × 109 человек (прибавьте к этому еще огромные библиотеки накопленного знания). Цифры впечатляют, но это всего лишь цифры — если отдельного человека считать вычислительным устройством, то разницу, обусловленную переходом от индивидуума к сообществу, развитие компьютерных технологий сможет при необходимости свести на нет в течение каких-нибудь нескольких десятилетий. Очевидно, что искусственный случай с учителями-людьми в роли внешнего окружения не дает нам ничего принципиально нового, что могло бы объяснить, каким образом из целиком и полностью вычислительных составляющих возникает абсолютно невычислимая сущность.