Упомянутые Π1
-высказывания вполне укладываются в пределы степени сложности, устанавливаемые любым достаточно большим значением c, — например, тем, что может быть обусловлено каким-либо правдоподобным набором механизмов M, лежащим в основе поведения наших роботов. Несомненно, найдется множество других Π1-высказываний, которые будут значительно сложнее приведенных здесь, хотя степень их сложности и не превысит величины c. Некоторые из таких Π1-высказываний окажутся, скорее всего, особенно неудоборешаемыми, а доказать некоторые из последних, в свою очередь, будет наверняка еще сложнее, чем теорему о четырех красках или даже гипотезу Гольдбаха. Любое из этих Π1-высказываний, истинность которого может быть однозначно установлена роботами (посредством демонстрации, достаточно убедительной для присвоения высказыванию ☆-статуса и успешного преодоления им всех заграждений, установленных с целью обеспечения безошибочности получаемых роботами результатов), автоматически становится теоремой формальной системы Q*.Кроме того, возможны и пограничные случаи, приемлемость или неприемлемость (причем грань между этими состояниями весьма тонка) которых определяется строгостью стандартов, необходимых для получения ☆-статуса, или тем, насколько точный характер имеют меры предосторожности, установленные с целью обеспечения безошибочности утверждений, принимаемых в качестве «кирпичей» для построения формальной системы Q
*. Точная формулировка системы Q* будет различной в зависимости от того, полагаем мы такое Π1-высказывание P безошибочным ☆-утверждением либо нет. В обычных обстоятельствах эта разница не имеет большого значения, поскольку различные варианты системы Q*, обусловленные принятием или отклонением высказывания P, являются логически эквивалентными. Такая ситуация может возникнуть в случае Π1-высказываний, доказательства истинности которых роботы могут счесть сомнительными просто из-за их чрезмерной сложности. Если доказательство высказывания P окажется на деле логическим следствием из других ☆-утверждений, которые уже приняты как безошибочные, то возникнет эквивалентная система Q*, причем вне зависимости от того, принимается высказывание P в качестве ее теоремы или нет. С другой стороны, возможны такие Π1-высказывания, которые потребуют для своего доказательства каких-то хитроумных логических процедур, выходящих за рамки любых логических следствий из тех ☆-утверждений, которые были приняты как безошибочные ранее, при построении системы Q*. Обозначим получаемую таким образом формальную систему (до включения в нее высказывания P) через Q*0, а систему, образующуюся после присоединения к системе Q*0 высказывания P, через Q*1. Система Q*1 окажется неэквивалентна системе Q*0 в том, например, случае, если высказыванием P будет гёделевское предположение G(Q*0). Однако если роботы, в соответствии с нашим допущением, способны достичь человеческого уровня математического понимания (а то и превзойти его), то они безусловно должны быть способны понять аргументацию Гёделя, так что им ничего не остается, как признать истинность гёделевского предположения для какой угодно системы Q*0 (присвоив ему гарантирующий безошибочность ☆-статус), коль скоро обоснованность этой системы Q*0 ими же ☆-подтверждена. Таким образом, если они принимают систему Q*0, то они должны принять и систему Q*1 (при условии, что степень сложности высказывания G(Q*0) не превышает c — а так оно и будет, если значение c выбрано таким, каким мы выбрали его выше).Необходимо отметить, что наличие либо отсутствие Π1
-высказывания P в формальной системе Q* никоим образом не влияет на представленные в §§3.19 и 3.20 рассуждения. Само Π1-высказывание G(Q*) принимается за истинное в любом случае, независимо от того, входит высказывание P в систему Q* или нет.Могут найтись и другие способы, с помощью которых роботам удастся «перескочить» через ограничения, налагаемые некоторыми ранее принятыми критериями присвоения ☆-статуса Π1
-высказываниям. В этом нет ничего «парадоксального» — до тех пор, пока роботы не попытаются применить подобное рассуждение к тем самым механизмам M, которые обусловливают их поведение, т.е. к собственно системе Q*. Возникающее в этом случае противоречие не является, строго говоря, «парадоксом», однако дает возможность посредством reductio ad absurdum показать, что такие механизмы существовать не могут или, по крайней мере, не могут быть познаваемыми для роботов, а следовательно, и для нас.Отсюда мы и делаем вывод о том, что такие «роботообучающие» механизмы — восходящие, нисходящие, смешанного типа, причем в каких угодно пропорциях, и даже с добавлением случайных элементов — не могут составить познаваемую основу для построения математического робота человеческого уровня.
3.26. Разрыв вычислительных петель