Похоже, что до Кардано никто в эти таинственные дебри не углублялся и не задумывался над тем, каким образом из них «произрастает» наш собственный «вещественный» мир. (Снаружи заглядывали — например, Герон Александрийский и Диофант Александрийский в первом и, соответственно, в третьем веках нашей эры, судя по некоторым свидетельствам, размышляли над идеей существования у отрицательного числа чего-то вроде «квадратного корня», однако ни один из них не набрался храбрости объединить такие «числа» с числами вещественными и прийти таким образом к понятию комплексного
числа; не разглядели они и глубинной связи между своими «псевдочислами» и вещественными решениями уравнений.) Возможно, именно удивительное сочетание в одном человеке двух личностей — мистика и рационально мыслящего ученого — позволило Кардано уловить эти первые проблески того, что развилось позднее в одну из мощнейших математических концепций. В последующие годы, благодаря трудам Бомбелли, Коутса, Эйлера, Весселя, Арганда, Гаусса, Коши, Вейерштрасса, Римана, Леви, Льюи и многих других, теория комплексных чисел разрослась вглубь и вширь и занимает сегодня заслуженное место среди наиболее изящных и универсально применимых математических конструкций. Однако лишь с появлением в первой четверти двадцатого века квантовой теории мы осознали, какую странную и всепронизывающую роль играют комплексные числа в самой фундаментальной структуре того физического мира, в котором мы живем, — не знали мы прежде и том, насколько тесна связь между комплексными числами и вероятностями. Даже у Кардано не возникло (да и не могло возникнуть) ни малейшего подозрения о существовании таинственной глубинной связи между двумя величайшими его вкладами в математику — связи, которая образует самый фундамент материальной Вселенной на тончайшем из ее уровней.5.6. Основные правила квантовой теории
Что же это за связь? Что объединяет комплексные числа и теорию вероятностей, имея результатом неоспоримо превосходное описание работы тончайших внутренних механизмов нашего мира? Грубо говоря, законы комплексного исчисления справедливы на очень тонком подуровне феноменов, тогда как вероятности играют свою роль на узком мостике, что соединяет тот тонкий подуровень с хорошо знакомым нам уровнем обыденного восприятия, — от такого «объяснения», разумеется, проку немного; для сколько-нибудь реального понимания нам понадобится нечто более существенное.
Рассмотрим для начала роль комплексных чисел. В силу самого их определения их очень сложно принять в качестве инструмента для описания действительной физической реальности. Наибольшая сложность заключается в том, что им, на первый взгляд, просто нет места на уровне тех феноменов, что мы способны непосредственно воспринимать, на уровне, где действуют классические законы Ньютона, Максвелла и Эйнштейна. Таким образом, для того, чтобы наглядно представить себе, как именно работает квантовая теория, необходимо (хотя бы предварительно) учесть, что физические процессы происходят на двух четко разделенных уровнях: квантовом
подуровне, где как раз и играют свою странную роль комплексные числа, и классическом уровне привычных макроскопических физических законов. На квантовом уровне комплексные числа выглядят вполне естественно — однако вся эта естественность напрочь пропадает, случись им забрести на уровень классический. Я вовсе не хочу сказать, что между уровнем, на котором действуют квантовые законы, и уровнем классически воспринимаемых феноменов непременно должно наличествовать физическое разделение; давайте просто вообразим (пока), что такое разделение существует — это поможет понять смысл процедур, реально применяемых в квантовой теории. Вопрос о существовании такого физического разделения в действительности очень глубок, и мы попытаемся на него ответить несколько позднее.Где же начинается
квантовый уровень? Надо думать, квантовым называется уровень тех физических объектов, которые «достаточно малы» — например, молекулы, атомы, элементарные частицы. Впрочем, на физические расстояния это требование «малости» распространяется далеко не всегда. Эффекты квантового уровня могут возникать и на огромном удалении. Вспомним о четырех световых годах, разделяющих два додекаэдра в моей истории в §5.3, или о двенадцати метрах, разделяющих фотоны во вполне реальном эксперименте Аспекта (§5.4). Иначе говоря, квантовый уровень определяется не малым физическим размером, но чем-то более тонким, причем на данном этапе этой «формулировкой» лучше и ограничиться. Можно также приблизительно считать квантовым уровень, где мы рассматриваем очень малые изменения в энергии. Более подробно мы обсудим этот вопрос в §6.12.