Читаем Тени разума. В поисках науки о сознании полностью

До сих пор мы рассматривали гильбертово пространство, имея в виду лишь то, что структурно оно представляет собой комплексное векторное пространство. Однако, помимо комплексно-векторной структуры, у гильбертова пространства имеется еще одно, не менее важное, свойство, крайне полезное для описания процедуры редукции R. Речь идет об эрмитовом скалярном произведении (или внутреннем произведении), каковая операция позволяет из любой пары гильбертовых векторов получить одно-единственное комплексное число. Она же дает нам возможность ввести два весьма важных понятия. Первое — квадрат длины гильбертова вектора как скалярное произведение вектора на самого себя. Например, нормированное состояние (необходимое, как мы отмечали выше — см. §5.8, — для строгой применимости правила квадратов модулей) задается гильбертовым вектором, квадрат длины которого равен единице. Вторым важным понятием, сопутствующим скалярному произведению, является понятие ортогональности гильбертовых векторов — векторы ортогональны, когда их скалярное произведение равно нулю. Ортогональными считаются векторы, направленные, в том или ином смысле, «под прямым углом» друг к другу. Применительно к состояниям, ортогональными обычно называют состояния, независимые одно от другого. Важность этого понятия для квантовой физики заключается в том, что различные альтернативные результаты любого измерения всегда ортогональны друг другу.

В качестве примера ортогональных состояний можно привести состояния |↑〉 и |↓〉, с которыми мы встречались при рассмотрении частицы со спином 1/2. (Отметим, что ортогональность в гильбертовом пространстве, как правило, не соответствует перпендикулярности в пространстве обычном; в случае спина 1/2 ортогональные состояния |↑〉 и |↓〉 представляют физические конфигурации, ориентированные, скорее, в противоположных направлениях, нежели под прямым углом.) Следующий пример — состояния |↑↑…↑〉, |↓↑…↑〉, …, |↓↓…↓〉 спина 1/2 n; каждое такое состояние ортогонально всем остальным. Ортогональными являются и все различные возможные положения, в которых может находиться квантовая частица. Более того, ортогональны как состояния |B〉 и i|C〉 (см. §5.7 — прошедшая и отраженная части состояния фотона, получаемые в результате падения фотона на полупрозрачное зеркало), так и состояния i|D〉 и —|E〉, в которые эволюционируют первые два после отражения от двух непрозрачных зеркал.

Последний факт иллюстрирует одно важное свойство шрёдингеровой эволюции U. Любые два изначально ортогональных состояния ортогональными и остаются, если каждое эволюционирует в соответствии с U в течение одного и того же временного периода. Таким образом, свойство ортогональности при эволюции U сохраняется. Кроме того, эволюция U сохраняет и значение скалярного произведения состояний. Собственно, именно в этом и заключается формальный смысл понятия унитарная эволюция.

Как уже упоминалось выше, ключевая роль ортогональности состоит в следующем: различные возможные квантовые состояния, возникающие при любом «измерении» квантовой системы и дающие — при поднятии на классический уровень — непосредственно различимые результаты, непременно ортогональны друг другу. Особенно наглядно это проявляется в нулевых измерениях — таких, например, как в задаче об испытании бомб, §§5.2 и 5.9. Не-обнаружение какого-либо квантового состояния устройством, способным это состояние обнаружить, приводит в конечном счете к тому, что результирующее состояние «перескакивает» в нечто, ортогонально противоположное тому состоянию, какое детектор, собственно, призван обнаруживать.

Как мы только что отметили, ортогональность математически выражается как обращение в нуль скалярного произведения состояний. Это скалярное произведение, в общем случае, представляет собой комплексное число, поставленное в соответствие какой-либо паре элементов гильбертова пространства. Если обозначить эти элементы (или состояния) через |ψ〉 и |φ〉, то упомянутое комплексное число записывается так: 〈ψ|φ〉. При этом выполняется ряд простых алгебраических тождеств, которые мы можем записать в следующем (несколько, правда, неуклюжем) виде:

ψ¯|¯φ〉 = 〈φ|ψ〉,

ψ|(|φ〉 + |χ〉) = 〈ψ|φ〉 + 〈ψ|χ〉,

(zψ|)|φ〉 = zψ|φ〉,

ψ|ψ〉 > 0, кроме случая |ψ〉 = 0.

Кроме того, можно показать, что 〈ψ|ψ〉 = 0 при |ψ〉 = 0. Мне не хочется надоедать читателю прочими математическими подробностями (если же таковые подробности кого-то заинтересуют, то ознакомиться с ними можно, открыв любой стандартный текст по квантовой теории; см., например, [94]).

Существенными для наших дальнейших нужд свойствами скалярного произведения являются лишь следующие два (уже, впрочем, упоминавшиеся выше):

Перейти на страницу:

Похожие книги

Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан

В книгу вошли одни из самых известных произведений английского философа Томаса Гоббса (1588-1679) – «Основы философии», «Человеческая природа», «О свободе и необходимости» и «Левиафан». Имя Томаса Гоббса занимает почетное место не только в ряду великих философских имен его эпохи – эпохи Бэкона, Декарта, Гассенди, Паскаля, Спинозы, Локка, Лейбница, но и в мировом историко-философском процессе.Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.

Томас Гоббс

Философия