Читаем Тени разума. В поисках науки о сознании полностью

Какова эта матрица плотности? Рассуждая стандартным образом{78} (который основывается на некоем частном способе моделирования упомянутого окружения —• исходя при этом из неких не вполне обоснованных допущений, таких, например, как допущение о несущественности корреляций ЭПР-типа), приходим к заключению, что матрица плотности в данном случае должна очень быстро принять вид, очень хорошее приближение к которому дает следующее выражение:

D = a|ΨД〉〈ΨД| + b|ΨН〉〈ΨН|,

где

a = |w|2 и b = |z|2.

Эту матрицу плотности можно интерпретировать, как представление комбинации вероятностей двух альтернатив: регистрация детектором фотона (результат ДА) с вероятностью |w|2 и отсутствие регистрации детектором фотона (результат НЕТ) с вероятностью |z|2. Если бы имела место процедура R, то именно к такому результату и должен был бы прийти физик по завершении своего эксперимента — или нет?

Думаю, здесь следует проявить некоторую осторожность. Матрица плотности D и в самом деле позволяет физику вычислить необходимые ему значения вероятностей, если предположить, что альтернатив всего две: либо |ΨД〉, либо |ΨН〉. Но из наших рассуждений такое предположение никоим образом не следует. Вспомним из предыдущего параграфа, что матрицы плотности, как комбинации вероятностей состояний, допускают множество альтернативных интерпретаций. В частности, поскольку зеркало полупрозрачно, мы имеем здесь в точности такую же матрицу плотности, как и та, какую мы получили выше для частицы со спином 1/2:

D = 1/2 |ΨД〉〈ΨД| + 1/2 |ΨН〉〈ΨН|.

Можно записать ее иначе; скажем, так:

D = 1/2 |ΨP〉〈ΨP| + 1/2 |ΨQ〉〈ΨQ|,

где |ΨP〉 и |ΨQ〉 — два других возможных ортогональных состояния детектора (что представляет собой, надо сказать, совершенную нелепость с точки зрения классической физики), причем

|ΨP〉 = (|ΨД〉 + |ΨН〉)/√2 и |ΨQ〉 = (|ΨД〉 - |ΨН〉)/√2.

Тот факт, что наш физик полагает, будто состояние его детектора описывается матрицей плотности D, никак не объясняет, почему он всегда обнаруживает детектор либо в состоянии ДА (что соответствует |ΨД〉), либо в состоянии НЕТ (|ΨН〉). Потому что совершенно такую матрицу плотности он получил бы, если состояние системы представляло собой равновесную вероятностную комбинацию, по классическим меркам, нелепостей |ΨP〉 и |ΨQ〉 (описывающих, соответственно, квантовые линейные суперпозиции «ДА плюс НЕТ» и «ДА минус НЕТ»)!

Для того, чтобы подчеркнуть физическую абсурдность состояний, подобных |ΨP〉 и |ΨQ〉, в случае макроскопического детектора, рассмотрим «измерительное устройство», состоящее из ящика и помещенной внутрь него кошки, причем ящик снабжен неким устройством, убивающим кошку, если детектор регистрирует фотон (в состоянии 〉), если же детектор ничего не регистрирует (фотон в состоянии 〉), то кошка остается жива — это измерительное устройство широко известно под названием шрёдингерова кошка (см. §5.1 и рис. 6.3). Результат ДА представляется здесь как «кошка мертва», а результат НЕТ — как «кошка жива». Однако из одного лишь того, что нам известно, что матрица плотности имеет вид равновесной комбинации этих двух состояний, вовсе не следует, что кошка либо мертва, либо жива (с равной вероятностью), так как эта же кошка может также быть (с равной вероятностью) либо «мертва плюс жива», либо «мертва минус жива»! Сама по себе матрица плотности ничего не говорит о том, что эти последние классически абсурдные возможности в известном нам реальном мире никогда не реализуются. Как и во «множественно мировом» подходе к объяснению R, нам, похоже, вновь предлагается поразмыслить над тем, какого рода состояния мы намерены позволить воспринимать обладающему сознанием наблюдателю (в данном случае, нашему «физику»). С чего мы, собственно говоря, взяли, что состояния вроде «кошка мертва плюс кошка жива» совершенно и абсолютно недоступны восприятию некоего сознательного внешнего[46] наблюдателя?

Перейти на страницу:

Похожие книги

Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан

В книгу вошли одни из самых известных произведений английского философа Томаса Гоббса (1588-1679) – «Основы философии», «Человеческая природа», «О свободе и необходимости» и «Левиафан». Имя Томаса Гоббса занимает почетное место не только в ряду великих философских имен его эпохи – эпохи Бэкона, Декарта, Гассенди, Паскаля, Спинозы, Локка, Лейбница, но и в мировом историко-философском процессе.Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.

Томас Гоббс

Философия