В этом параграфе я сформулирую новый критерий{82}
гравитационной редукции вектора состояния, существенно отличный от того, что был предложен в НРК, но близкий к некоторым идеям, высказанным в последнее время Диози и другими учеными. Причины, побудившие меня к поискам связи между R-процедурой и гравитацией, остаются в силе, однако моя теперешняя гипотеза получила с тех поп дополнительную теоретическую поддержку с другой стороны. Более того, мне удалось избавиться от некоторых концептуальных проблем, присущих прежнему варианту, и сделать его более удобным для применения. В НРК я предлагал отыскать критерий, который позволял бы определить, когда два состояния (каждое со своим гравитационным полем — т.е. пространством-временем) оказываются слишком различными для того, чтобы продолжать сосуществовать в квантовой линейной суперпозиции. Соответственно, на этом этапе должна была происходить редукция R. Нынешняя идея несколько отличается от прежней. Мы больше не ищем некую абсолютную меру гравитационной разницы между состояниями, чтобы выяснить с ее помощью, в какой момент состояния разойдутся настолько, что суперпозиция станет невозможна. Вместо этого, мы рассматриваем суперпозицию сколь угодно разных состояний как нестабильную — в том смысле, в каком нестабильно, например, ядро урана — и вводим величину скорости редукции вектора состояния, каковая скорость определяется как раз степенью разности состояний. Чем больше разность, тем выше скорость редукции.Для наглядности применим новый критерий сначала к конкретной ситуации, описанной в §6.10
, хотя его несложно обобщить и на многие другие случаи. Нас, в частности, интересует энергия, необходимая в упомянутой ситуации для того, чтобы сдвинуть одну копию объекта относительно другой, с учетом лишь гравитационных эффектов. Итак, мы представляем себе, что два объекта (две массы) первоначально занимают один и тот же объем пространства (см. рис. 6.6); затем одна копия объекта начинает медленно удаляться от другой, уменьшая по мере движения степень взаимопроникновения, пока, наконец, не произойдет полное их разделение, т.е., в контексте рассматриваемой ситуации, пока не будет достигнута суперпозиция состояний. Взяв величину, обратную затраченной на эту операцию гравитационной энергии (в абсолютных единицах[49]), мы получим приближенное время (также в абсолютных единицах), по истечении которого произойдет редукция состояния, в результате которой объект из состояния суперпозиции самопроизвольно и скачкообразно перейдет в то или иное локализованное состояние.Рис. 6.6. Для того чтобы найти время редукции ħ
/E, представим себе объект в виде двух расходящихся копий и вычислим энергию E, затрачиваемую на такое расхождение, учитывая лишь гравитационное притяжение объектов.Если в качестве объекта был выбран шар с массой m
и радиусом a, то для энергии мы получим величину порядка m2/a. Вообще говоря, действительное значение энергии зависит еще и от того, на какое расстояние перемещается объект, однако в данном случае это расстояние очень незначительно, поскольку в окончательной конфигурации две копии объекта расходятся лишь настолько, чтобы не перекрывать друг друга. Дополнительная энергия, необходимая для перемещения объекта от точки касания на любое расстояние (вплоть до бесконечности), есть величина того же порядка (коэффициент 5/7), что и энергия, затрачиваемая на перемещение от полного взаимоперекрытия до точки касания. Таким образом, пока нас интересует лишь порядок величины; вкладом в общую энергию, вносимым расхождением копий объекта уже после разделения, можно пренебречь, коль скоро разделение (по большей части) таки состоялось. Согласно такой схеме, время редукции составит величину порядкаa
/m2(в абсолютных единицах) или, очень приближенно,
1/(20p
2a5),где p
— плотность объекта. То есть в случае объекта обычной плотности (скажем, капли воды) время редукции примерно равно 10186/a5.В определенных простых ситуациях эта схема дает вполне «приемлемые» значения. Возьмем, например, нуклон (протон или нейтрон): если a
— это «радиус сильного взаимодействия» 10—13 см, что в абсолютных единицах составляет почти 1020, а масса m приблизительно равна 1019, то время редукции будет что-то около 1058, т.е. более десяти миллионов лет. То, что это время велико, обнадеживает, поскольку на отдельных нейтронах эффекты квантовой интерференции наблюдались экспериментально{83}. Получи мы очень малое время редукции, наши рассуждения вошли бы в противоречие с результатами этих наблюдений.