Читаем Тени разума. В поисках науки о сознании полностью

С учетом вышесказанного решение задачи (А) может происходить следующим образом. Мы поочередно проверяем каждое натуральное число, начиная с 0, на предмет того, не является ли оно суммой трех квадратов. При этом, разумеется, рассматриваются только те квадраты, величина которых не превышает самого числа. Таким образом, для каждого натурального числа необходимо проверить некоторое конечное количество квадратов. Отыскав тройку квадратов, составляющих в сумме данное число, переходим к следующему натуральному числу и снова ищем среди квадратов (не превышающих по величине рассматриваемое число) такие три, которые дают в сумме это самое число. Вычисление завершается лишь тогда, когда мы находим натуральное число, которое невозможно получить путем сложения любых трех квадратов. Попробуем применить описанную процедуру на практике и начнем наше вычисление с нуля. Нуль равен 02 + 02 + 02, что, безусловно, является суммой трех квадратов. Далее рассматриваем единицу и находим, что она не равна 02 + 02 + 02, однако равна 02 + 02 + 12. Переходим к числу 2 и выясняем, что оно не равно ни 02 + 02 + 02, ни 02 + 02 + 12, но равно 02 + 12 + 12. Затем следует число 3 и сумма 3 = 12 + 12 + 12; далее — число 4 и сумма 4 = 02 + 02 + 22; после 5 = 02 + 12 + 22 и 6 = 12 + 12 + 22 переходим к 7, и тут обнаруживается, что ни одна из троек квадратов (всех возможных троек квадратов, каждый из которых не превышает 7)

02 + 02 + 0 02 + 02 + 1 02 + 02 + 2 02 + 12 + 1 02 + 12 + 22

02 + 22 + 22   12 + 12 + 12   12 + 12 + 22   12 + 22 + 12   22 + 22 + 22

не дает в сумме 7. На этом этапе вычисление завершается, а мы делаем вывод: 7 есть одно из искомых чисел, так как оно не является суммой квадратов трех чисел.

2.3. Незавершающиеся вычисления

Будем считать, что с задачей (А) нам просто повезло. Попробуем решить еще одну:

(B) Найти число, не являющееся суммой квадратов четырех чисел.

На этот раз, добравшись до числа 7, мы находим, что в виде суммы квадратов четырех чисел его представить вполне возможно: 7 = 12 + 12 + 12 + 22, поэтому мы переходим к числу 8 (сумма 8 = 02 + 02 + 22 + 22), далее — 9 (сумма 9 = 02 + 02 + 02 + 32) и 10 (10 = 02 + 02 + 12 + 32) и т.д. Вычисления все продолжаются и продолжаются (… 23 = 12 + 22 + 32 + 32, 24 = 02 + 22 + 22 + 42, …, 359 = 12 + 32 + 52 + 182, …) и завершаться, похоже, не собираются. Мы предполагаем, что искомое число, должно быть, невообразимо велико, и для его вычисления нашему компьютеру потребуется чрезвычайно большой промежуток времени и огромный объем памяти. Более того, мы уже начинаем сомневаться, существует ли оно вообще, это самое число. Вычисления все продолжаются и продолжаются, и конца им не видно. Вообще говоря, так оно и есть: описанная вычислительная процедура завершиться в принципе не может. Известна теорема, впервые доказанная в 1770 году великим французским (и отчасти итальянским) математиком Жозефом Луи Лагранжем, согласно которой в виде суммы квадратов четырех чисел можно представить любое число. Теорема эта, кстати, весьма непроста (доказать ее как-то пытался великий современник Лагранжа, швейцарский математик Леонард Эйлер, человек, отличавшийся удивительной математической интуицией, оригинальностью и продуктивностью, однако его постигла неудача).

Я, разумеется, не собираюсь докучать читателю подробностями доказательства Лагранжа, вместо этого рассмотрим одну не в пример более простую задачу:

(C) Найти нечетное число, являющееся суммой двух четных чисел.

Нисколько не сомневаюсь, что все и так уже все поняли, однако все же поясню. Очевидно, что вычисление, необходимое для решения этой задачи, раз начавшись, не завершится никогда. При сложении четных чисел, т.е. чисел, кратных двум,

0, 2, 4, 6, 8, 10, 12, 14, 16, …,

всегда получаются четные же числа; иными словами, никакая пара четных чисел не может дать в сумме нечетное число, т.е. число вида

1, 3, 5, 7, 9, 11, 13, 15, 17, ….

Я привел два примера ((B) и (C)) вычислений, которые невозможно выполнить до конца. Несмотря на то, что в первом случае вычисление и в самом деле никогда не завершается, доказать это довольно непросто, во втором же случае, напротив, бесконечность вычисления более чем очевидна. Позволю себе привести еще один пример:

(D) Найти четное число, большее 2, не являющееся суммой двух простых чисел.

Вспомним, что простым называется натуральное число (отличное от 0 и 1), которое делится без остатка лишь само на себя и на единицу; иными словами, простые числа составляют следующий ряд:

2, 3, 5, 7, 11, 13, 17, 19, 23, ….

Перейти на страницу:

Похожие книги

Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан

В книгу вошли одни из самых известных произведений английского философа Томаса Гоббса (1588-1679) – «Основы философии», «Человеческая природа», «О свободе и необходимости» и «Левиафан». Имя Томаса Гоббса занимает почетное место не только в ряду великих философских имен его эпохи – эпохи Бэкона, Декарта, Гассенди, Паскаля, Спинозы, Локка, Лейбница, но и в мировом историко-философском процессе.Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.

Томас Гоббс

Философия