Читаем Тени разума. В поисках науки о сознании полностью

Чтобы еще раз подчеркнуть, что я имею в виду, скажу следующее: сам я часто посещаю математические семинары, на которых не слежу (а иногда и не пытаюсь следить) за подробностями представляемых доказательств. Наверное, если бы я сел где-нибудь и обстоятельно изучил эти самые доказательства, я и в самом деле смог бы проследить за мыслью автора — хотя, возможно, это удалось бы мне лишь при наличии дополнительной литературы или устных пояснений, которые восполнили бы возможные пробелы в моем образовании или же в материалах самого семинара. Я знаю, что в действительности я этого делать не стану. У меня почти наверняка не окажется на это ни времени, ни достаточного количества внимания, ни, впрочем, особого желания. Но при этом я вполне могу принять представленный на семинаре результат на веру по всевозможным «несущественным» причинам — например, потому что полученный результат правдоподобно «выглядит», или потому что у лектора надежная репутация, или потому что другие слушатели, которых я считаю более сведущими в таких делах, нежели я сам, этот результат оспаривать не стали. Конечно, я могу ошибиться во всех своих умозаключениях, а результат вполне может оказаться ложным — либо истинным, но никоим образом не следующим из представленного доказательства. Все эти тонкости никак не влияют на ту принципиальную позицию, которую я здесь представляю. Результат может оказаться истинным и адекватно доказанным, и в таком случае я, в принципе, могу проследить за ходом всего доказательства — или же ошибочным, в каковом случае, как уже упоминалось, он нас в данном контексте не интересует (см. §3.2 и §3.4). Возможные исключения могут составить лишь те случаи, когда представляемый материал касается каких-либо спорных аспектов теории бесконечных множеств или опирается на какой-то необычный метод рассуждения, который может быть признан сомнительным в соответствии с теми или иными математическими воззрениями (что, само по себе, может заинтриговать меня до такой степени, что я впоследствии действительно попытаюсь это доказательство повторить). Как раз такие исключительные ситуации мы обсуждали выше, в комментарии к возражению Q11.

Что касается подобных соображений относительно природы математической точки зрения, на практике многие математики могут и не иметь четкого представления о том, каких именно фундаментальных принципов они в действительности придерживаются. Однако, как уже было сказано выше, в комментарии к Q11, если математик, у которого нет определенной позиции в отношении того, следует ли принимать, скажем, некую «аксиому Q», желает проявить осмотрительность, то ничто не мешает ему изложить требующие принятия аксиомы Q результаты в следующем виде: «Из принятия аксиомы Q следует, что…». Разумеется, математики, несмотря на всю их пресловутую педантичность, проявляют в подобных вопросах должную осмотрительность далеко не всегда. Нельзя отрицать и того, что время от времени им удается допускать и вовсе очевидные ошибки. И все же все эти ошибки — если они допущены по недосмотру, а не следуют из тех или иных непоколебимых принципов — являются исправимыми. (Как упоминалось ранее, возможность действительного применения математиками в качестве основы для своих решений необоснованного алгоритма будет подробно рассмотрена в §3.2 и §3.4. Поскольку эта возможность не противоречит выводу G, она не является предметом настоящего обсуждения.) В данном случае нас не занимают исправимые ошибки, так как к вопросу о принципиальной достижимости тех или иных результатов они никакого отношения не имеют. А. вот возможные неопределенности в действительных взглядах математиков, безусловно, требуют дальнейшего обсуждения, которое и приводится ниже.

Q13. У математиков нет абсолютно определенных убеждений относительно обоснованности или непротиворечивости используемых ими формальных систем — как нет и однозначного ответа на вопрос о том, «пользователями» каких именно формальных систем они себя полагают. Не подвергаются ли их убеждения постепенному размыванию по мере того, как формальные системы все более удаляются от области феноменов, доступных непосредственному интуитивному или экспериментальному восприятию?

Перейти на страницу:

Похожие книги

Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан

В книгу вошли одни из самых известных произведений английского философа Томаса Гоббса (1588-1679) – «Основы философии», «Человеческая природа», «О свободе и необходимости» и «Левиафан». Имя Томаса Гоббса занимает почетное место не только в ряду великих философских имен его эпохи – эпохи Бэкона, Декарта, Гассенди, Паскаля, Спинозы, Локка, Лейбница, но и в мировом историко-философском процессе.Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.

Томас Гоббс

Философия