Читаем Теорема Гёделя полностью

Теперь мы уже можем сформулировать парадокс Ришара. Определяющее выражение для свойства быть ришаровым числом описывает, очевидно, некоторое арифметическое свойство натуральных чисел. Значит, само определяющее выражение входит в описанную выше последовательность определяющих выражений. Но тогда оно имеет в этой последовательности некоторый номер, который мы обозначим через n. Зададим теперь вполне естественный вопрос (немедленно приводящий к антиномии Ришара): является ли число n ришаровым? Читатель, конечно, сразу увидит, что противоречие теперь неизбежно. В самом деле, число n является ришаровым в том и только в том случае, если оно не обладает свойством, описываемым предложением, имеющим номер n, т. е. не обладает свойством быть ришаровым! Короче говоря, n ришарово тогда и только тогда, когда оно не ришарово, т. е. утверждение «n — ришарово число» является одновременно истинным и ложным.

Следует заметить, что это противоречие в известном смысле есть трюк, который нам удался благодаря не вполне точному соблюдению правил игры. Дело в том, что мы фактически использовали одно допущение, которое, однако, предпочли в явном виде не формулировать. Мы согласились рассматривать определения чисто арифметических свойств натуральных чисел, т. е. свойств, формулируемых в терминах таких понятий, как арифметическое сложение, умножение и т. п. Затем, однако, без дополнительных оговорок мы включили в ту же последовательность определений предложение, сформулированное посредством упоминания о некотором способе записи арифметических свойств. Строго говоря, определение свойства быть ришаровым числом просто не принадлежит к той последовательности определений, которая вначале описывалась, так как это определение использует такие метаматематические понятия, как номер буквы (или вообще знака) в некоторой последовательности. Таким образом, если мы будем четко различать утверждения самой арифметики (относящиеся к числам, а отнюдь не к записям, в которые такие числа входят, т. е. к равенствам, неравенствам и вообще формулам) и утверждения относительно арифметики (т. е. как раз утверждения об арифметических формулах), то мы не получим никакого парадокса Ришара.

Значит, сам по себе парадокс Ришара совсем не страшен. Но сама схема приводящего к нему рассуждения чрезвычайно поучительна и плодотворна. Речь идет о возможности «отображения» (или «перевода») метаматематических высказываний, относящихся к некоторой достаточно богатой формальной системе, в саму систему. Сама по себе идея «перевода» хорошо известна и играет важнейшую роль во многих областях математики. Такая идея лежит, например, в основе всей аналитической геометрии, где геометрические понятия переводятся в алгебраические (арифметические), так что вместо геометрических соотношений мы, по существу, имеем дело с алгебраическими. (Вспомните хотя бы обсуждавшееся в разделе 2 отображение геометрии в алгебру, использованное Гильбертом для доказательства относительной непротиворечивости его системы геометрических аксиом). Такие отображения-«переводы» играют большую роль и в физике, например, когда свойства электрического тока излагаются на языке гидродинамических явлений. Эта же идея перевода лежит в основе технического моделирования — идет ли речь об исследовании свойств модели самолета (или же самолета в натуральную величину) в аэродинамической трубе, или же об изучении в лабораторных условиях распределения каких-либо материальных масс с помощью аналоговой модели, где роль этих масс играют электрические заряды.

На идее отображения[12] основан так называемый принцип двойственности в проективной геометрии, состоящий в возможности взаимной замены в аксиомах (а значит, и в теоремах) проективной геометрии терминов «точка» и «прямая», в результате чего аксиомы переходят в аксиомы (соответственно теоремы — в теоремы). При одном из таких «переводов» слово «точка» можно считать «образом», слово «прямая» — «прообразом»; при обратном переводе роли меняются.

Перейти на страницу:

Все книги серии НАУКУ — ВСЕМ! Шедевры научно-популярной литературы

Наблюдения и озарения или Как физики выявляют законы природы
Наблюдения и озарения или Как физики выявляют законы природы

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.Итак, вперед — совершать открытия вместе с гениями!

Марк Ефимович Перельман , Марк Ефимович Перельман

Научная литература / Прочая научная литература / Образование и наука
Людвиг Больцман: Жизнь гения физики и трагедия творца
Людвиг Больцман: Жизнь гения физики и трагедия творца

В настоящей книге рассказывается о жизни и творчестве выдающегося австрийского физика Людвига Больцмана (1844-1906), автора классических исследований по молекулярно-кинетической теории вещества, статистической физике и термодинамике. Книга состоит из трех частей. Первая часть «Диалог», по существу, представляет собой небольшой исторический очерк о физике «добольцмановского» времени — от появления первых научных идей в Древней Греции и последующего развития физики вплоть до середины XIX века. Вторая часть «Монолог» посвящена описанию жизненного пути и творческой деятельности великого физика. Биографические главы перемежаются с анализом научных трудов Больцмана — от самых первых работ до творений, указывающих новые пути развития физики и составляющих фундамент современной науки. Здесь же описывается бескомпромиссная борьба Больцмана за признание справедливости атомного учения. Наконец, третья часть книги — «Триумф» — представляет собой рассказ о победе идей Больцмана, принесших бессмертие имени ученого, об их жизни и развитии в современной физике.Книга рассчитана на широкий круг читателей, интересующихся историей развития физики; может быть полезна студентам и аспирантам физико-математических вузов.

Олег Павлович Спиридонов

Биографии и Мемуары

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное