Читаем Теорема Гёделя полностью

Докажем теперь, что свойство «быть тавтологией» наследственно относительно применений правила modus ponens. (Доказательство его наследственности относительно правила подстановки предоставляется читателю.) Пусть формулы S1 и S1 S2 — тавтологии; нам надо доказать, что тогда и формула S2 есть тавтология. Допустим, что S2 не является тавтологией. В таком случае для хотя бы одного распределения элементарных компонент этой формулы по классам K1 и K2 она принадлежит классу K2. Но, по предположению, S1 является тавтологией, т. е. принадлежит классу Ki при любых распределениях своих элементарных компонент, в том числе и при том, при котором S2 принадлежит K2[7]. Но тогда при этом распределении формула S1S2 должна (в силу второго условия) принадлежать классу K2, что, однако, противоречит предположению о тавтологичности S1 S2. Противоречие показывает, что S2 должна быть тавтологией. Таким образом, тавтологичность формулы есть свойство наследственное, т. е. передаваемое от посылок правила modus ponens к его заключению.

Теперь нам остается указать пример формулы нашего исчисления, не являющейся тавтологией. Такова, например, формула «p ˅ q», принадлежащая классу K2, если обе ее компоненты («p» и «q») принадлежат этому классу[8]. (В переводе на содержательный язык: высказывание «„p“ или q“» ложно, если ложны оба входящие в его состав высказывания «p» и «q».)

Наша цель достигнута. Мы нашли формулу, не являющуюся теоремой нашей системы. Но в случае противоречивости выбранной нами системы аксиом такой формулы в нашем исчислении не нашлось бы. Таким образом, из аксиом исчисления высказываний нельзя вывести никакой формулы одновременно с ее отрицанием. Этим и завершается абсолютное доказательство непротиворечивости исчисления высказываний.

Легко видеть, что классы K1 и K2 можно понимать соответственно как класс истинных и класс ложных высказываний. Мы, однако, намеренно воздерживались от этой терминологии в ходе самого доказательства (хотя не раз, комментируя отдельные ее шаги, подразумевали возможность ее использования), чтобы подчеркнуть то обстоятельство, что наше доказательство в принципе не нуждается в ссылках на какую бы то ни было интерпретацию формул исчисления высказываний, хотя понять его как следует легче именно при таком «переводе» на содержательный язык.

В заключение следует сказать еще об одной важной проблеме, относящейся к исчислению высказываний. Мы установили, что каждая теорема этого исчисления является тавтологией, т. е. — если выражаться в терминах неоднократно упоминаемой выше содержательной интерпретации — логической истиной, «законом логики». Естественно задать в известной мере и обратный вопрос: каждое ли логически истинное высказывание, выразимое на языке нашего исчисления (т. е. каждая ли тавтология), является теоремой данного исчисления (выводимой из его аксиом)? И на этот вопрос можно дать положительный ответ; но доказательство такого факта слишком длинно, чтобы приводить его здесь. Но нам хотелось бы обратить внимание на одно обстоятельство, не имеющее отношения к самому доказательству: дело в том, что результат этот свидетельствует о достаточности выбранных нами аксиом для получения всех тавтологичных формул — иными словами, всех логически истинных высказываний, выразимых на языке исчисления высказываний. Системы аксиом, обладающие таким свойством, принято называть «полными».

Вопрос о полноте той или иной системы аксиом представляет, как правило, большой интерес. В самом деле, основным стимулом для аксиоматизации различных разделов математики бывает стремление найти подходящий перечень исходных допущений, из которых затем можно было бы вывести все истинные предложения данной области. Скажем, когда Евклид формулировал некоторую аксиоматизацию элементарной геометрии, он старался отобрать аксиомы таким образом, чтобы из них можно было вывести все истинные геометрические утверждения, не только уже известные в то время, но в принципе и любые другие, которые можно было бы научиться доказывать когда-либо в будущем.

Помимо прочего, Евклид обнаружил поразительную проницательность своей трактовкой знаменитой аксиомы параллельности как допущения, логически не зависящего от остальных аксиом предложенной им системы. Лишь спустя много времени удалось доказать, что эта аксиома действительно не может быть выведена из остальных аксиом Евклида, т. е. что без аксиомы параллельности эта система аксиом неполна.

До недавнего времени считалось более или менее само собой разумеющимся, что для каждой конкретной области математики можно подобрать полную систему аксиом. В частности, математики были убеждены, что система аксиом, предложенная для аксиоматизации арифметики натуральных чисел, полна или во всяком случае может быть пополнена (сделана полной) добавлением к исходному перечню еще конечного списка аксиом. Одним из величайших открытий Гёделя и было как раз обнаружение невозможности такой полной аксиоматизации арифметики.

Перейти на страницу:

Все книги серии НАУКУ — ВСЕМ! Шедевры научно-популярной литературы

Наблюдения и озарения или Как физики выявляют законы природы
Наблюдения и озарения или Как физики выявляют законы природы

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.Итак, вперед — совершать открытия вместе с гениями!

Марк Ефимович Перельман , Марк Ефимович Перельман

Научная литература / Прочая научная литература / Образование и наука
Людвиг Больцман: Жизнь гения физики и трагедия творца
Людвиг Больцман: Жизнь гения физики и трагедия творца

В настоящей книге рассказывается о жизни и творчестве выдающегося австрийского физика Людвига Больцмана (1844-1906), автора классических исследований по молекулярно-кинетической теории вещества, статистической физике и термодинамике. Книга состоит из трех частей. Первая часть «Диалог», по существу, представляет собой небольшой исторический очерк о физике «добольцмановского» времени — от появления первых научных идей в Древней Греции и последующего развития физики вплоть до середины XIX века. Вторая часть «Монолог» посвящена описанию жизненного пути и творческой деятельности великого физика. Биографические главы перемежаются с анализом научных трудов Больцмана — от самых первых работ до творений, указывающих новые пути развития физики и составляющих фундамент современной науки. Здесь же описывается бескомпромиссная борьба Больцмана за признание справедливости атомного учения. Наконец, третья часть книги — «Триумф» — представляет собой рассказ о победе идей Больцмана, принесших бессмертие имени ученого, об их жизни и развитии в современной физике.Книга рассчитана на широкий круг читателей, интересующихся историей развития физики; может быть полезна студентам и аспирантам физико-математических вузов.

Олег Павлович Спиридонов

Биографии и Мемуары

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука