Читаем Теорема Гёделя полностью

Оказывается, что к числу теорем нашего исчисления относится формула «p ﬤ (~ p q)» (выражаемая словесно следующим образом: «если p, то не p влечет q»). (Мы примем этот результат к сведению, не проводя фактического его доказательства.) Допустим, что некоторая формула S, так же как и ее отрицание ~ S, выводима из аксиом. Подставляя тогда S вместо переменной «p» в только что упомянутую теорему (пользуясь правилом подстановки) и применяя затем дважды modus ponens, мы получим, что теоремой является и формула «q».

Подставляя S вместо (p) в «p ﬤ (~ p ﬤ q)», мы получим сначала «S ﬤ (~ S q)». Беря затем эту формулу и формулу S в качестве посылок modus ponens, получим «~ S ~ q». Наконец, из последней формулы и ~ S также по modus ponens получим формулу «q».

Но если формула, состоящая из одной-единственной переменной «q», является теоремой, то поскольку вместо «I» можно подставить любую формулу, то любая формула нашего исчисления оказывается выводимой из аксиом. Отсюда видно, что если какая- либо формула S вместе со своим отрицанием ~ S является теоремой рассматриваемого исчисления, то в нем теоремой является любая формула. Короче говоря, каждая формула противоречивого исчисления является теоремой — из противоречивой системы аксиом можно вывести любую формулу. Но этот же результат можно выразить и в «обратной» форме: если не каждая формула исчисления является теоремой (т. е. имеется хотя бы одна формула, не выводимая из данных аксиом), то это исчисление непротиворечиво. Таким образом, наша задача сводится к тому, чтобы показать, что имеется по крайней мере одна формула, не выводимая из рассматриваемой системы аксиом.

Задача может быть решена посредством некоторого метаматематического рассуждения о рассматриваемой системе. Идея такого рассуждения весьма прозрачна. Суть ее сводится к нахождению некоторого структурного свойства формул данной системы, удовлетворяющего следующим трем условиям:

(1) Свойство это должно выполняться для всех четырех аксиом.

(2) Свойство это должно быть «наследственным» по отношению к правилам преобразования; иначе говоря, если оно присуще всем аксиомам, то оно должно принадлежать и любой формуле, выводимой из этих аксиом. А поскольку формула, выводимая из аксиом, есть, по определению, теорема, то данное условие сводится к тому, что искомым свойством должна обладать каждая теорема.

(3) Искомому свойству должны удовлетворять не все формулы, которые можно построить с помощью правил образования данной системы. Мы должны уметь показать, что по крайней мере одна формула системы этим свойством не обладает.

Если нам удастся найти свойство формул системы, удовлетворяющее перечисленным трем условиям, то задача построения абсолютного доказательства непротиворечивости системы будет решена. В самом деле, это свойство, будучи наследственным и принадлежа аксиомам, принадлежит и теоремам; значит, если некоторое знакосочетание, являясь формулой данной системы, не обладает указанным свойством, то это — не теорема. Иначе говоря, если член, подозреваемый в принадлежности некоему семейству (формула), лишен фамильных черт, присущих каждому настоящему члену семейства (идущих от общих предков — аксиом), то он на самом деле не может принадлежать этого клану (быть теоремой). Но если нам удалось найти формулу данной системы, не являющуюся теоремой, то мы тем самым доказали непротиворечивость этой системы — ведь, как мы совсем недавно отмечали, в системе, не являющейся непротиворечивой, каждая формула выводима из аксиом (т. е. каждая формула является теоремой). Короче говоря, все, что нам надо для решения нашей задачи, — это найти хоть одну формулу, не обладающую наследственным свойством, удовлетворяющим описанным выше условиям.

В качестве такого свойства годится, например, свойство «быть тавтологией». Вы знаете, что так обычно именуют утверждения, дважды повторяющие внешне различным образом одну и ту же мысль и не несущие поэтому фактически никакой информации. Например, «раз Джон есть отец Чарлза, то Чарлз — сын Джона». В обобщение этого свойства «неинформативности» в логике тавтологиями принято называть утверждения, которые не могут не быть истинными. Примером может служить высказывание: «дождь идет или дождь не идет». Говорят также, что тавтологии — «истины во всех возможных мирах», или, еще по-другому, что это необходимо (или логически) истинные высказывания.

Перейти на страницу:

Все книги серии НАУКУ — ВСЕМ! Шедевры научно-популярной литературы

Наблюдения и озарения или Как физики выявляют законы природы
Наблюдения и озарения или Как физики выявляют законы природы

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.Итак, вперед — совершать открытия вместе с гениями!

Марк Ефимович Перельман , Марк Ефимович Перельман

Научная литература / Прочая научная литература / Образование и наука
Людвиг Больцман: Жизнь гения физики и трагедия творца
Людвиг Больцман: Жизнь гения физики и трагедия творца

В настоящей книге рассказывается о жизни и творчестве выдающегося австрийского физика Людвига Больцмана (1844-1906), автора классических исследований по молекулярно-кинетической теории вещества, статистической физике и термодинамике. Книга состоит из трех частей. Первая часть «Диалог», по существу, представляет собой небольшой исторический очерк о физике «добольцмановского» времени — от появления первых научных идей в Древней Греции и последующего развития физики вплоть до середины XIX века. Вторая часть «Монолог» посвящена описанию жизненного пути и творческой деятельности великого физика. Биографические главы перемежаются с анализом научных трудов Больцмана — от самых первых работ до творений, указывающих новые пути развития физики и составляющих фундамент современной науки. Здесь же описывается бескомпромиссная борьба Больцмана за признание справедливости атомного учения. Наконец, третья часть книги — «Триумф» — представляет собой рассказ о победе идей Больцмана, принесших бессмертие имени ученого, об их жизни и развитии в современной физике.Книга рассчитана на широкий круг читателей, интересующихся историей развития физики; может быть полезна студентам и аспирантам физико-математических вузов.

Олег Павлович Спиридонов

Биографии и Мемуары

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука