Читаем Теорема Гёделя полностью

принадлежат математике (арифметике); каждая из них составлена из одних только арифметических знаков. Высказывание же «„x“ есть переменная» относится уже к метаматематике, поскольку оно характеризует некоторый арифметический символ, утверждая, что он принадлежит некоторому специальному классу символов (а именно, классу переменных). Принадлежит метаматематике и высказывание «формула „0 = 0“ выводима из формулы „x = x“ посредством подстановки „0“ вместо переменной, x“», описывающее определенное отношение между некоторыми двумя формулами. Относится к метаматематике и утверждение «„0 ≠ 0“ не есть теорема», гласящее, что некоторая арифметическая формула не может быть выведена из аксиом арифметики. Метаматематике, конечно, принадлежит и высказывание «арифметика непротиворечива» (иными словами, из аксиом арифметики нельзя вывести двух взаимно противоречивых формул, например формул «0 = 0» и «0 ≠ 0»). Ясно, что это высказывание гласит нечто об арифметике, а именно, оно утверждает, что пары арифметических формул определенного вида не находятся в определенном отношении к формулам, составляющим систему аксиом арифметики.

Следует отметить, что все эти метаматематические высказывания не содержат никаких математических знаков и формул, а содержат лишь их имена. Различие между выражениями и именами выражений очень важно. Кстати, и в обычном разговорном языке никакое предложение не содержит объектов, о которых в нем говорится, — оно содержит лишь их имена. Скажем, когда мы говорим о каком-нибудь городе, то мы вставляем в предложение не сам город, а его имя (название). Точно так же, если мы хотим сказать что-нибудь о каком-либо слове (или вообще любом языковом выражении), то мы должны использовать в качестве члена предложения не само слово/выражение, а его имя. Обычно это делается при помощи кавычек. Наше изложение как раз и следует этому обычаю. Мы можем сказать, например, «Чикаго — большой город». Но фраза «Чикаго состоит из трек слогов» бессмысленна (безграмотна). Чтобы выразить последнее утверждение правильно, мы должны написать: «„Чикаго" состоит из трех слогов».

Точно так же неверно было бы написать:

«x = 5 есть уравнение».

Правильная запись такова:

«„x = 5" есть уравнение».

Конечно, различие между теорией и метатеорией может относиться не только к математике — ведь это просто хорошо известное всем нам различие между каким-либо изучаемым нами предметом и разговорами об этом предмете. Например, высказывание «у птиц из рода плавунчиков яйца высиживают самцы» относится к предмету, изучаемому зоологами, и принадлежит зоологии; но если мы скажем, что утверждение относительно плавунчиков показывает, что в зоологии есть много загадочного, то это уже будет утверждение не о плавунчиках, а о предыдущем высказывании, и дисциплину, в которую входит такое суждение, следовало бы назвать метазоологией.

Точно таково же соотношение между математикой и метаматематикой: предмет первой составляют сами формальные системы, которые придумывают математики, предмет второй — описание таких формальных систем, выяснение и обсуждение их свойств.

Важность столь настоятельно подчеркиваемого нами различения математики и метаматематики трудно переоценить. Игнорирование или недооценка этого различения приводят к недоразумениям, а то и к прямым противоречиям. Осознание его важности позволило глубже уяснить логическую структуру математических методов рассуждения и четко регламентировать употребление различных формальных символов, превращая математику в чисто формальное исчисление, свободное от всяческих неявно подразумеваемых допущений и побочных смысловых ассоциаций. Только на базе таких новых представлений стало возможным дать точные определения математических операций и логических правил, которыми математики пользовались до тех пор без ясного понимания того, что же, собственно, они делают.

Перейти на страницу:

Все книги серии НАУКУ — ВСЕМ! Шедевры научно-популярной литературы

Наблюдения и озарения или Как физики выявляют законы природы
Наблюдения и озарения или Как физики выявляют законы природы

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.Итак, вперед — совершать открытия вместе с гениями!

Марк Ефимович Перельман , Марк Ефимович Перельман

Научная литература / Прочая научная литература / Образование и наука
Людвиг Больцман: Жизнь гения физики и трагедия творца
Людвиг Больцман: Жизнь гения физики и трагедия творца

В настоящей книге рассказывается о жизни и творчестве выдающегося австрийского физика Людвига Больцмана (1844-1906), автора классических исследований по молекулярно-кинетической теории вещества, статистической физике и термодинамике. Книга состоит из трех частей. Первая часть «Диалог», по существу, представляет собой небольшой исторический очерк о физике «добольцмановского» времени — от появления первых научных идей в Древней Греции и последующего развития физики вплоть до середины XIX века. Вторая часть «Монолог» посвящена описанию жизненного пути и творческой деятельности великого физика. Биографические главы перемежаются с анализом научных трудов Больцмана — от самых первых работ до творений, указывающих новые пути развития физики и составляющих фундамент современной науки. Здесь же описывается бескомпромиссная борьба Больцмана за признание справедливости атомного учения. Наконец, третья часть книги — «Триумф» — представляет собой рассказ о победе идей Больцмана, принесших бессмертие имени ученого, об их жизни и развитии в современной физике.Книга рассчитана на широкий круг читателей, интересующихся историей развития физики; может быть полезна студентам и аспирантам физико-математических вузов.

Олег Павлович Спиридонов

Биографии и Мемуары

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука