Мы обратимся теперь к другим примерам, в которых мы увидим совершенно другие свойства. Начнем с кинетической теории газов. Как должны мы представлять себе сосуд, наполненный газом? Бесчисленные молекулы, несущиеся с большими скоростями, бороздят сосуд во всех направлениях. В любой момент они ударяются о стенки и друг о друга, и эти столкновения происходят в самых разнообразных условиях. Здесь нас больше всего поражает не столько малость причин, сколько их сложность. И все-таки первоначальный элемент находится здесь и играет важную роль. Если бы молекула уклонилась налево или направо от своей траектории на очень малую величину, сравнимую с радиусом действия молекул газа, то она избежала бы толчка или таковой произошел бы при совершенно иных условиях, а это могло бы изменить на 90° или 180° направление скорости после толчка. И это еще не все. Как мы видели, достаточно отклонить молекулу до толчка на бесконечно малое расстояние, чтобы она после толчка отклонилась на конечное расстояние. Поэтому, если бы молекула подверглась двум последовательным столкновениям, то ей достаточно было бы сообщить до первого толчка бесконечно малое уклонение второго порядка, чтобы мы получили после первого столкновения бесконечно малое уклонение первого порядка, а после второго – конечное. Между тем молекула испытывает не только два столкновения, а весьма большое число их в секунду. Поэтому, если первый толчок умножает отклонение на весьма большое число
Обратимся теперь к другому примеру. Почему нам кажется во время ливня, что капли дождя распределены совершенно случайно? Это опять-таки происходит оттого, что причины, которыми обусловливается их образование, очень сложны. Ионы были распространены в атмосфере задолго до ливня, задолго до него они были подвержены постоянно меняющимся токам воздуха, они были увлечены в вихри весьма малых размеров, так что окончательное распределение их не находилось уже ни в каком соответствии с начальным. Затем температура внезапно понижается, туман сгущается, и каждый из этих ионов становится центром капли дождя. Чтобы установить, каково будет распределение капель и сколько их упадет на каждый камень мостовой, недостаточно было бы узнать начальное положение ионов.
Необходимо было бы учесть действие тысячи слабых и прихотливых воздушных течений.
Совершенно то же имеет место, когда пылинки взвешены в воде. Сосуд изборожден токами, законы которых нам неизвестны. Мы знаем только, что они очень сложны; по истечении некоторого времени пылинки будут распределены случайно, т. е. равномерно по всему сосуду: и это обусловливается именно сложностью потоков. Если бы они подчинялись простому закону, если бы, например, сосуд был круглый и токи описывали круги вокруг оси сосуда, то дело обстояло бы иначе, ибо каждая пылинка оставалась бы на той же высоте и на том же расстоянии от оси.
Мы пришли бы к тому же результату, если бы мы рассматривали смесь двух жидкостей или смесь двух мелко истолченных порошков. Чтобы привести еще грубый пример, скажем, что приблизительно то же самое происходит, когда мы тасуем игральные карты. При каждой перетасовке карты подвергаются перемещению (аналогичному тому, которое мы изучаем в теории перестановок). Какое же расположение карт получится в результате? Вероятность того, что получится некоторое определенное расположение (например, то, при котором на
Еще два слова о теории ошибок. Здесь причины особенно сложны и особенно многообразны. Сколько ловушек должен избежать наблюдатель, располагая даже лучшими инструментами. Он должен приучить себя замечать наиболее опасные и избегать их. Их называют систематическими ошибками. Но даже когда он их устранил, – допуская, что это ему удалось, – остается много мелких ошибок, которые, накапливаясь, могут оказаться опасными. Таким образом, возникают случайные ошибки; мы приписываем их случаю, потому что причины их слишком сложны и многочисленны; и здесь мы имеем только мелкие причины, каждая из которых производит незначительный эффект, но вследствие их взаимодействия и вследствие значительного их числа результаты становятся серьезными.