В заключение несколько замечаний. Существует разительный контраст между грубостью той примитивной геометрии, которая сводится к распределительному щиту, и безграничной точностью геометрии геометров. И, однако, последняя – плод первой. Но не ее одной; она должна была быть оплодотворена присущей нам способностью к построению математических понятий, как, например, понятия о группах; нужно было среди этих чистых понятий найти наиболее приспособленное к этому грубому пространству, генезис которого я пытался объяснить на предшествующих страницах и которое является общим у нас и у высших животных.
Очевидность некоторых геометрических постулатов, сказали мы, есть не что иное, как наша косная неспособность отказаться от очень старых привычек. Но эти постулаты чрезвычайно точны, тогда как привычки заключают в себе нечто по существу зыбкое. И, как только мы хотим мыслить, мы испытываем нужду в этих чрезвычайно точных постулатах, так как лишь с их помощью мы можем избежать противоречия. Но среди всех возможных систем постулатов имеются такие, которые мы отказываемся принять, потому что они не согласуются с нашими привычками; как ни зыбки, как ни эластичны эти привычки, все же они имеют предел этой эластичности.
Мы видим, что если геометрия не есть экспериментальная наука, то это все же наука, рожденная в связи с опытом; мы создали пространство, которое она изучает, но мы приспособили его к миру, в котором мы живем. Мы сделали выбор наиболее удобного пространства, но этим выбором руководил опыт. И так как выбор был бессознателен, то нам кажется, что он для нас необходим; одни говорят, что он сделался для нас необходимым путем опыта, другие говорят, что мы рождаемся с вполне сложившимся представлением о пространстве. Из предыдущих рассуждений явствует, какая доля истины и ошибки заключается в этих двух суждениях.
Очень трудно определить участие индивида и участие расы в том эволюционном процессе воспитания, который закончился построением пространства. В какой мере кто-нибудь из нас, будучи перенесен с момента рождения в другой совершенно мир, где, например, преобладали бы тела, перемещающиеся по законам движения, свойственным неевклидовским твердым телам, в какой мере, повторяю, мог бы он отказаться от пространства предков, чтобы построить совершенно новое пространство?
Участие расы кажется преобладающим. Однако если мы и обязаны ему грубым пространством, зыбким пространством высших животных, о котором я говорил выше, то не обязаны ли мы бессознательному опыту индивида тем безгранично точным пространством, которое имеет геометр? Этот вопрос нелегко разрешается. Укажем, однако, на факт, который показывает, что пространство, завещанное нам предками, сохраняет известную пластичность. Некоторые охотники научиваются ловить рыбу под водой, хотя изображение этих рыб вследствие преломления несколько приподнято. Они учатся этому инстинктивно: они сумели, следовательно, изменить свой прежний инстинкт направления. Или, если хотите, они сумели на место связи
Глава II. Математические определения и преподавание
1. Я должен говорить здесь об общих определениях в математических науках; по крайней мере к этому меня обязывает название настоящей главы. Но мне невозможно будет оставаться в рамках предмета в такой мере, в какой это требовалось бы правилом единства действия; я не смогу трактовать вопроса, не затрагивая отчасти других ближайших вопросов, и потому прошу простить мне уклонения вправо и влево, которые встретятся в дальнейшем.
Что разумеют под хорошим определением? Для философа или для ученого это есть определение, которое приложимо ко всем определяемым предметам и только к ним; такое определение удовлетворяет правилам логики. Но при преподавании дело обстоит иначе. Здесь хорошим определением будет то, которое понято учениками.
Чем объяснить, что многие умы отказываются понимать математику? Не парадоксально ли это? В самом деле, вот наука, которая апеллирует только к основным принципам логики, например к принципу противоречия, апеллирует к тому, что составляет, так сказать, скелет нашего разумения, к тому, от чего нельзя отказаться, не отказываясь вместе с тем от самого мышления, и все же встречаются люди, которые находят эту науку темной! И этих людей большинство! Пусть бы они оказались неспособными изобретать – это еще допустимо. Но они не понимают доказательств, которые им предлагают, они остаются слепыми, когда им подносят свет, который для нас горит чистым и ярким пламенем, – вот что чрезвычайно странно.
А между тем достаточно и небольшого опыта, доставляемого экзаменами, чтобы убедиться в том, что эти слепые отнюдь не являются исключениями. Здесь имеется проблема, которая не легко решается, но которая должна занимать всех, желающих посвятить себя делу преподавания.