В геометрии мы встречаемся на первых шагах с понятием о прямой линии. Можно ли определить прямую линию? Обычное определение ее как кратчайшего расстояния от одной точки до другой меня не удовлетворяет. Я исходил бы просто из линейки и показал бы ученику, как можно проверить линейку, повернув ее другой стороной, такая проверка есть истинное определение прямой линии: прямая линия – это ось вращения. Затем надобно ученику показать, что линейку можно проверить посредством скольжения, и при этом обнаружится одно из наиболее важных свойств прямой линии. Что же касается того свойства, что прямая линия есть кратчайшее расстояние между двумя точками, то это уже теорема, которая может быть доказана аподиктически, но это доказательство слишком тонко, чтобы найти себе место в курсе средней школы. Лучше было бы показать, что линейка, предварительно проверенная, налагается на натянутую проволоку. При всех затруднениях такого рода можно без опасений умножать число аксиом, оправдывая их даже на грубых примерах. Некоторое число аксиом необходимо должно быть допущено, и если число их немного превосходит то, которое строго необходимо, то беда еще невелика. Главное – это научить правильно рассуждать при помощи раз допущенных аксиом. Дедушка Сарсей часто говорил, что в театре зритель охотно принимает те постулаты, которые ему навязаны сначала, но раз занавес поднят, он становится неумолимым в своей логической требовательности. То же самое происходит в математике.
Для определения круга можно исходить из циркуля. Ученики с первого взгляда узнают начерченную кривую. Затем им покажут, что расстояние между двумя точками инструмента остается постоянным, что одна из этих точек неподвижна, а другая движется, и таким образом ученики естественно придут к логическому определению. Определение плоскости содержит в себе аксиому, этого не нужно скрывать. Возьмем рисовальную доску и покажем, что движущаяся линейка постоянно накладывается на эту плоскость, сохраняя при этом три степени свободы. Сравним затем плоскость с цилиндром и конусом, с поверхностями, на которые прямая может быть наложена только при сохранении двух степеней свободы. Возьмем далее три рисовальные доски и покажем сначала, что они, будучи наложены одна на другую, могут скользить при трех степенях свободы. И, наконец, чтобы установить различие между плоскостью и сферой, покажем, что две доски, накладывающиеся порознь на третью, накладываются также друг на друга.
Быть может, вас удивит это постоянное применение подвижных инструментов. Это не грубый прием, он более философский, чем это кажется с первого взгляда. Что такое геометрия для философа? Это изучение некоторой группы. Какой именно? Группы движений твердых тел. Каким же образом определить эту группу, не заставляя двигаться некоторые твердые тела?
Должны ли мы сохранить классическое определение параллельных линий и сказать, что параллельными называются такие прямые, которые расположены в одной плоскости и никогда не встречаются, сколько бы их ни продолжали? Нет, ибо это определение отрицательное, оно не может быть проверено опытом и не может быть, следовательно, рассматриваемо как непосредственное данное интуицией. Определение это не может быть сохранено особенно еще потому, что оно совершенно чуждо понятию о группе, чуждо идее о движении твердых тел, которая, как я уже сказал, является истинным источником геометрии. Не лучше ли определить сначала прямолинейное переносное движение какой-либо неизменяемой фигуры как такое движение, в котором все точки этой фигуры описывают прямолинейные траектории, показать, что подобное перемещение возможно, когда треугольник скользит по линейке? Из экспериментального констатирования этого факта, возведенного в аксиому, легко было бы вывести как понятие о параллельной прямой, так и сам евклидов постулат.
Мне нет надобности останавливаться на определении скорости или ускорения, а также и других кинематических понятий; они с большим удобством могут быть отнесены к определению производной. Я остановлюсь, напротив, на динамических понятиях о силе и массе.
Одна вещь меня поражает, а именно: сколь многие молодые люди, получившие среднее образование, далеки от того, чтобы применять к реальному миру те механические законы, которые им были преподаны. И это не только потому, что они к этому неспособны, но и потому, что об этом даже и не думают. Для них мир науки и мир реальности отделены друг от друга непроницаемой перегородкой. Нередко можно видеть господина, прилично одетого, вероятно, бакалавра, сидящего в карете и воображающего, что он помогает ей двигаться, толкая ее вперед, вопреки принципу действия и противодействия.