Зная силу, легко определить массу. На этот раз определение должно быть заимствовано из динамики. Иначе этого сделать нельзя, так как цель, которой здесь хотят достигнуть, заключается в уяснении различия между массой и весом. Здесь определение также должно быть подготовлено рядом опытов. У нас есть машина, которая как будто нарочно создана для того, чтобы познать, что такое масса, это – машина Атвуда. Затем следует напомнить о законах падения тел, о том, что ускорение тяжести остается одним и тем же для тяжелых и легких тел, что оно изменяется вместе с географической широтой и т. д.
Если вы мне теперь скажете, что методы, которые я пропагандирую, давно уже применяются в лицеях, я буду более обрадован, чем удивлен. Я знаю, что в общем у нас обучение математике поставлено удовлетворительно. Я не хочу, чтобы оно было нарушено, это меня опечалило бы, я желаю лишь медленных прогрессивных улучшений. Это обучение не должно подвергаться крутым колебаниям и капризу преходящей моды. Его высокая воспитательная ценность померкла бы в такой буре. Здравая и прочная логика должна по-прежнему лежать в его основании. Определение, внушаемое при помощи примеров, всегда необходимо, но оно должно подготовлять определение, а не заменять его; оно должно по крайней мере выяснить желательность такого логического определения в тех случаях, когда это последнее с пользой для дела может быть дано лишь на ступени высшего обучения.
Вы, конечно, понимаете, что изложенными соображениями я отнюдь не отказываюсь от того, что писал раньше. Я часто имел случай критиковать некоторые определения, которые я теперь сам же предлагаю. Эта критика сохраняет всю свою силу. Определения, о которых идет речь, могут быть только предварительными. Но пройти через эти определения необходимо.
Глава III. Математика и логика
Можно ли математику свести к логике, не обращаясь предварительно к тем принципам, которые ей, математике, свойственны? Существует школа математиков, которая со всей страстью и верой в дело стремится доказать это. Она выработала специальный язык, в котором нет больше слов, а имеются одни только знаки. Этот язык понятен только немногим посвященным, так что профаны склонны преклоняться перед категорическими утверждениями горячих адептов. Небесполезно, однако, ближе исследовать эти утверждения, чтобы убедиться, насколько оправдывается тот категорический тон, с которым они высказываются.
Но чтобы понять сущность вопроса, необходимо познакомиться с историческими деталями дела и в особенности вспомнить характер работ Кантора.
Понятие бесконечности уже давно было введено в математику. Но эта бесконечность была такой, какую философы называют потенциальной. В математике бесконечность обозначала количество, способное расти выше или ниже какого бы то ни было предела; это было изменяющееся количество, о котором можно было сказать, что оно перейдет все пределы, но нельзя было сказать, что оно их перешло. Кантор решил ввести в математику актуальную бесконечность, т. е. количество, не только способное перейти все пределы, но уже перешедшее через них. Он поставил себе вопросы вроде следующих: существует ли больше точек в пространстве, чем целых чисел? Существует ли больше точек в пространстве, чем точек на плоскости? И так далее.
Число целых чисел, число точек в пространстве и т. д. составляет то, что Кантор назвал кардинальным трансфинитным числом, т. е. таким количественным числом, которое больше всех обыкновенных количественных чисел. Кантор затем занялся сравнением этих кардинальных трансфинитных чисел. Размещая в соответствующем порядке элементы в совокупности, составленной из бесконечного числа таких элементов, он изобрел так называемые порядковые трансфинитные числа, на которых я не буду здесь останавливаться.
Многие математики последовали за Кантором и поставили ряд аналогичных вопросов. Они в такой степени освоились с трансфинитными числами, что готовы поставить теорию конечных чисел в зависимость от теории кардинальных чисел Кантора. По их мнению, чтобы вести преподавание арифметики по действительно логическому методу, необходимо начать с установления общих свойств кардинальных трансфинитных целых чисел, а затем выделить из них очень небольшой класс обыкновенных целых чисел. Этим способом можно было бы достигнуть цели, т. е. доказать все предложения, относящиеся к этому небольшому классу (т. е. всю нашу арифметику и нашу алгебру), не прибегая ни к какому началу, лежащему вне логики.
Этот метод, очевидно, противоречит всякой здоровой психологии. Конечно, не этим путем шел человеческий ум, создавая математику; и адепты нового метода, я полагаю, не думают ввести его на ступени среднего образования. Но по крайней мере логичен ли этот метод или, лучше сказать, безошибочен ли он? В этом можно усомниться.