Читаем Теорема века. Мир с точки зрения математики полностью

То, что Гильберт сделал в геометрии, другие захотели сделать в арифметике и в анализе. Однако если бы они в этом даже и успели, то разве кантианцы были бы осуждены на полное молчание? Может быть, и нет, ибо когда мы сообщаем математической мысли пустую форму, эта мысль, конечно, подвергается искажению. Допустим даже, что удалось установить, что все теоремы могут быть выведены из конечного числа аксиом путем чисто аналитических приемов, путем простых логических комбинаций, и что эти аксиомы суть не что иное, как соглашения. Философ, однако, сохранил бы за собой право исследовать происхождение этих условий и определить, почему эти условия оказались предпочтительными перед противоположными им.

Кроме того, не одна только логическая правильность суждений, ведущих от аксиом к теоремам, должна нас занимать. Разве вся математика исчерпывается правилами совершенной логики? Это было бы все равно как если бы мы сказали, что все искусство шахматного игрока сводится к правилам хода пешек. Из всех построений, которые могут быть скомбинированы из материалов, доставляемых логикой, нужно сделать выбор. Настоящий геометр и производит этот выбор здраво, руководствуясь верным инстинктом или же некоторым смутным сознанием о – я не знаю какой именно – более глубокой и более скрытой геометрии, которая одна и составляет ценность воздвигнутого здания.

Искать происхождение этого инстинкта, изучать законы этой глубокой геометрии, которые чувствуются, но словесно не формулируются – вот прекрасная задача для философов, которые не допускают, что логикой исчерпывается все. Но не на эту точку зрения хочу я стать, не так хочу я ставить вопрос. Инстинкт, о котором мы только что говорили, необходим изобретателю, но на первый взгляд кажется, будто при изучении уже созданной науки можно обойтись и без него. И вот я хочу исследовать, можно ли, приняв однажды принципы логики, я уж не говорю открыть, но даже доказать все математические истины, не прибегая снова к интуиции.

III

На этот вопрос я однажды уже дал отрицательный ответ (см. «Наука и гипотеза», глава I). Должен ли я этот ответ изменить ввиду появившихся новых трудов? Если я в то время ответил отрицательно, то это потому, что «принцип совершенной индукции» казался мне, с одной стороны, необходимым для математика, а с другой стороны, не сводимым к логике. Известно, что этот принцип заключается в следующем.

«Если какое-либо свойство справедливо относительно числа 1 и если установлено, что оно справедливо относительно числа n + 1, коль скоро оно справедливо относительно числа n, то оно будет верно для всех целых чисел».

В этом я по преимуществу видел математическое суждение. Я не хотел этим сказать, как некоторые это думали, что все математические суждения могут быть сведены к приложению этого принципа. Исследуя эти суждения ближе, можно заметить, что в них применяются многие другие аналогичные принципы, обладающие теми же существенными признаками. В их ряду принцип полной индукции является лишь простейшим, и вот почему я остановился на нем как на типичном.

Название принципа совершенной индукции, упрочившееся за этой формой суждения, не может быть признано правильным. Этот способ суждения представляет настоящую математическую индукцию, которая отличается от обыкновенной индукции только степенью своей достоверности.

IV. Определения и аксиомы

Существование подобных принципов ставит непримиримых логиков в затруднительное положение. Но как думают они выпутаться из него? Принцип полной индукции, говорят они, не есть аксиома в собственном смысле слова или априорное синтетическое суждение, он есть просто определение целого числа. Следовательно, этот принцип является простым соглашением. Чтобы разобраться в этой точке зрения, нужно подробнее исследовать отношения между определениями и аксиомами.

Обратимся сначала к статье Кутюра о математических определениях, появившейся в выходящем в Женеве журнале «Математическое образование». Мы найдем здесь различие между прямым определением и определением при помощи постулатов.

«Определение при помощи постулатов, – говорит Кутюра, – применяется не к одному понятию, а к системе понятий; оно заключается в перечислении основных соотношений, их связывающих и позволяющих доказать все прочие их свойства; эти соотношения и суть постулаты»…

Если предварительно были определены все эти понятия, за исключением одного, то это последнее и будет по определению тем объектом, который проверяет эти постулаты.

Итак, некоторые недоказуемые аксиомы математики суть лишь скрытые определения. Такая точка зрения часто правомерна, и я сам ее принял, когда шел вопрос, например, о постулате Евклида. Другие аксиомы геометрии недостаточны для полного определения расстояния между двумя точками. Ввиду этого из всех величин, удовлетворяющих этим остальным аксиомам, расстояние будет по определению той именно величиной, которая удовлетворяет постулату Евклида.

Перейти на страницу:

Все книги серии Квант науки

Похожие книги

Норвежский лес
Норвежский лес

…по вечерам я продавал пластинки. А в промежутках рассеянно наблюдал за публикой, проходившей перед витриной. Семьи, парочки, пьяные, якудзы, оживленные девицы в мини-юбках, парни с битницкими бородками, хостессы из баров и другие непонятные люди. Стоило поставить рок, как у магазина собрались хиппи и бездельники – некоторые пританцовывали, кто-то нюхал растворитель, кто-то просто сидел на асфальте. Я вообще перестал понимать, что к чему. «Что же это такое? – думал я. – Что все они хотят сказать?»…Роман классика современной японской литературы Харуки Мураками «Норвежский лес», принесший автору поистине всемирную известность.

Ларс Миттинг , Харуки Мураками

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Проза / Современная русская и зарубежная проза / Современная проза
27 принципов истории. Секреты сторителлинга от «Гамлета» до «Южного парка»
27 принципов истории. Секреты сторителлинга от «Гамлета» до «Южного парка»

Не важно, что вы пишете – роман, сценарий к фильму или сериалу, пьесу, подкаст или комикс, – принципы построения истории едины для всего. И ВСЕГО ИХ 27!Эта книга научит вас создавать историю, у которой есть начало, середина и конец. Которая захватывает и создает напряжение, которая заставляет читателя гадать, что же будет дальше.Вы не найдете здесь никакой теории литературы, академических сложных понятий или профессионального жаргона. Все двадцать семь принципов изложены на простом человеческом языке. Если вы хотите поэтапно, шаг за шагом, узнать, как наилучшим образом рассказать связную. достоверную историю, вы найдете здесь то. что вам нужно. Если вы не приемлете каких-либо рамок и склонны к более свободному полету фантазии, вы можете изучать каждый принцип отдельно и использовать только те. которые покажутся вам наиболее полезными. Главным здесь являетесь только вы сами.В формате PDF A4 сохранен издательский макет книги.

Дэниел Джошуа Рубин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная прикладная литература / Дом и досуг
Бозон Хиггса
Бозон Хиггса

Кто сказал что НФ умерла? Нет, она затаилась — на время. Взаимодействие личности и искусственного интеллекта, воскрешение из мёртвых и чудовищные биологические мутации, апокалиптика и постапокалиптика, жёсткий киберпанк и параллельные Вселенные, головокружительные приключения и неспешные рассуждения о судьбах личности и социума — всему есть место на страницах «Бозона Хиггса». Равно как и полному возрастному спектру авторов: от патриарха отечественной НФ Евгения Войскунского до юной дебютантки Натальи Лесковой.НФ — жива! Но это уже совсем другая НФ.

Антон Первушин , Евгений Войскунский , Игорь Минаков , Павел Амнуэль , Ярослав Веров

Фантастика / Научная Фантастика / Фантастика: прочее / Словари и Энциклопедии / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература