Отсюда ясно, насколько новая логика богаче классической логики. Символы разрослись и сочетаются в разнообразные комбинации, число которых уже неограниченно. Вправе ли мы так сильно расширять смысл слова «логика». Разбирать этот вопрос и вступать с Расселом в спор о слове – занятие бесцельное. Признаем то, чего требует Рассел, но не будем удивляться, если окажется, что некоторые истины, которые мы считали несводимыми к логике в старом смысле этого слова, теперь сводятся к новой логике, которая совершенно отличается от прежней.
Мы ввели большое число новых понятий, и эти понятия не были простыми комбинациями старых. Рассел на этот счет не обманывался; не только в начале первой главы, т. е. логики предложений, но в начале второй и третьей глав, т. е. логики классов и отношений, он вводит новые слова, которые принимает как определению не подлежащие.
Но это не все, он вводит также принципы, которые признает недоказуемыми. Но эти недоказуемые принципы являются обращениями к интуиции, являются априорными синтетическими суждениями. Мы принимали их за интуитивные, когда встречали их в более или менее явной форме в математических трактатах. Но изменился ли их характер от того, что смысл слова «логика» расширился и что мы находим их теперь в книге, носящей заголовок «Трактат по логике»? Они не изменили своей природы, они изменили лишь свое место.
Можно ли рассматривать эти принципы как скрытые определения?
Чтобы дать положительный ответ на этот вопрос, нужно было бы быть в состоянии доказать, что они не заключают в себе противоречия. Нужно установить, что, как бы далеко мы ни проводили ряд дедукций, мы никогда не впадем в противоречие с собой.
Можно было бы попытаться рассуждать таким образом. Мы можем проверить, что операции новой логики, будучи приложены к посылкам, не заключающим противоречия, приводят только к следствиям, также свободным от противоречия. Если, следовательно, после
Мы не вправе, следовательно, рассматривать эти аксиомы как скрытые определения, и нам остается только один исход: допустить для каждой из них новый акт интуиции. И такова именно, я думаю, мысль Рассела и Кутюра.
Таким образом, каждое из девяти неопределяемых понятий и каждое из двадцати недоказуемых предложений (я думаю, что если бы я считал, то насчитал бы их несколько больше), которые составляют основу новой логики, логики в широком смысле слова, предполагают акт новый, независимый от нашей интуиции, предполагают – почему этого не сказать? – настоящее синтетическое априорное суждение. В этом вопросе все, кажется, согласны. Но Рассел утверждает, что этими обращениями к интуиции дело и закончится, что в других обращениях не будет более нужды и можно будет построить всю математику, не вводя никакого нового элемента. Это мне и кажется сомнительным.
Кутюра часто повторяет, что эта новая логика совершенно не зависит от идеи о числе. Я не стану подсчитывать, как часто в его изложении встречаются числительные, как количественные, так и порядковые, или неопределенные прилагательные, как, например, «несколько». Процитируем, однако, некоторые примеры:
«Логическое произведение двух или нескольких предложений есть…»
«Все предложения допускают только двоякую оценку: как истинные или как ложные».
«Относительное произведение двух отношений есть отношение».
«Отношение имеет место между двумя терминами» и т. д.
В некоторых случаях можно было бы избежать неудобства такого выражения, но иногда оно требуется существом дела. Отношение не может быть понято без двух терминов; нельзя иметь интуиции отношения, не имея в то же время интуиции двух его терминов; мало того, мы должны усмотреть, что есть два термина, ибо для того, чтобы можно было постигнуть отношение, необходимо, чтобы этих терминов было два и только два.
Я подхожу к тому, кто Кутюра называет теорией расположения (или порядка) и что является основанием арифметики в собственном смысле этого слова. Кутюра начинает с формулировки пяти аксиом Пеано, независимость которых доказали Пеано и Падоа.
1. Нуль есть целое число.
2. Нуль не следует ни за каким целым числом.
3. Следующее за целым числом есть целое число; к этому следовало бы прибавить: всякое целое число имеет следующее за ним число.
4. Два целых числа равны, если равны следующие за ними числа.
Пятая аксиома есть принцип полной индукции.
Кутюра смотрит на эти аксиомы как на скрытые определения; они содержат выраженные при помощи постулатов определения нуля, целого числа и «следующего числа».
Но, как мы видели, для того чтобы основанное на постулатах определение могло быть принято, необходимо установить, что оно не заключает противоречия.