Говорят, что эти истины являются скрытыми определениями: первое есть определение целого числа, второе – прямой линии, третье – фосфора.
Я принимаю это для второй истины, но не принимаю для двух других. Объясню причину такой кажущейся непоследовательности.
Мы видели прежде всего, что определение приемлемо лишь в случае, если установлено, что оно не заключает в себе противоречия. Мы доказали также, что такое доказательство невозможно для первого определения; для второго, наоборот, Гильберт дал полное доказательство.
Что же касается третьего определения, то оно, очевидно, не заключает противоречия; но значит ли это, что определение, как это требовалось бы, с несомненностью свидетельствует о существовании определенного предмета? Мы выходим здесь из области математических наук и вступаем в область физических наук. Слово «существование» не имеет уже того смысла, что раньше, оно не обозначает отсутствия противоречия, а обозначает объективное существование.
Вот уже первое основание для различия, которое я делаю между вышеприведенными тремя случаями. Есть еще другое основание. Эти три понятия находят последующие применения; имеют ли эти понятия в применениях то значение, которое установлено этими тремя постулатами?
Возможные применения принципа индукции бесчисленны. Возьмем для примера одно из указанных нами выше применений, где мы стремились установить, что некоторая совокупность аксиом не может вести к противоречию. Для этого следует рассмотреть один из рядов силлогизмов, которые можно построить, исходя из этих аксиом как посылок.
Когда мы закончили
Приняв это, что делаем мы дальше? Мы показываем, что если нет противоречия с
Оба определения не тождественны; они эквивалентны, без сомнения, но они таковы в силу априорного синтетического суждения: нельзя прийти от одного к другому путем чисто логических операций. Мы не вправе, следовательно, принять второе определение, раз мы ввели целое число, следуя такому пути, который предполагает первое определение.
Посмотрим, напротив, как обстоит дело с прямой линией. Я так часто уже говорил об этом, что не решаюсь снова повторять то же самое.
Мы не имеем здесь, как это было в предыдущем случае, двух эквивалентных определений, логически друг к другу несводимых. Мы имеем только одно определение, выраженное словами. Могут сказать, что мы имеем еще другое определение, которое мы чувствуем, но не можем выразить, потому что мы имеем интуицию прямой линии, или потому, что мы представляем себе прямую линию. Но, прежде всего, мы не можем представить себе этой линии в геометрическом пространстве, а можем представить лишь в пространстве, имеющемся в нашем представлении; и затем мы легко можем представить себе объекты, которые обладают всеми другими свойствами прямой линии, кроме того свойства, которое удовлетворяет постулату Евклида. Эти объекты суть «неевклидовы прямые», которые с известной точки зрения отнюдь не являются чем-то, лишенным смысла, но представляют собой окружности (настоящие окружности в настоящем пространстве), ортогональные к определенной сфере. Если из этих объектов, которые мы также можем себе представить, мы считаем прямыми первые, т. е. евклидовы прямые, а не последние, т. е. неевклидовы прямые, то это обусловливается определением.
Если мы, наконец, обратимся к третьему примеру, к определению фосфора, то мы увидим, что истинное определение будет таково: фосфор – это кусок вещества, который я вижу вот в этом флаконе.