Читаем Теоретические основы инвестиций в акции, облигации и стандартные опционы полностью

В — третьих, при относительно большом значении для определения достижимого множества целесообразно использовать численные методы, что обусловлено чрезмерно громоздкими конечными формулами, которые выводятся в рамках аналитической геометрии. Численные методы предполагают определение достижимого множества портфеля, например, путём последовательного перебора всех возможных сочетаний объёмов инвестирования в каждый актив при этом большое количество арифметических операций предопределяет необходимость использования вычислительной техники.

Методологически оправданным (от простого к сложному) является анализ специфики достижимых множеств портфелей как комбинации:

безрискового актива с рискованным активом;

двух рискованных активов;

трёх рискованных активов;

рискованных активов;

безрискового актива и рискованных активов;

рискованных активов и активов с фиксированной доходностью.

При анализе инвестиционных качеств перечисленных вариантов комбинаций активов будем полагать, что возможности инвестора ограничены собственным капиталом.

Достижимое множество портфелей, содержащих безрисковый актив и рискованный актив. На основании приведенных выше соотношений рассмотрим основные свойства портфеля, который состоит из безрискового актива и рискованного актива


где и — относительные объёмы инвестирования в безрисковый и рискованный активы соответственно; и — доходность и СКО доходности безрискового актива соответственно; и — МО и СКО доходности рискованного актива соответственно; — коэффициент корреляции доходностей безрискового и рискованного активов.

Поскольку в данном случае, СКО доходности безрискового актива равно нулю () по определению, а случайная и детерминированная величины всегда не коррелированны () получаем


После простых преобразований находим


Анализ соотношения (1.14) показывает, что зависимость МО доходности портфеля от СКО доходности является линейной (рис. 1.2). Параметр является свободным членом в данной линейной зависимости, а отношение является тангенсом угла наклона прямой.



Рис. 1.2. Достижимое множество портфелей, содержащих безрисковый и рискованный активы


Условия и ограничивают прямую линию отрезком прямой, который пересекает ось ординат в точке, соответствующей портфелю (,), и завершается точкой, соответствующей портфелю (,).

Таким образом, достижимое множество портфелей, содержащих безрисковый и рискованный активы, имеет вид отрезка прямой линии, соединяющей точки и, соответствующие безрисковому активу и рискованному активу. При этом конкретное расположение портфеля на отрезке прямой зависит от соотношения относительных объёмов инвестирования в безрисковый и рискованный активы.

Достижимое множество портфелей, содержащих два рискованных актива. Предположим, что портфель содержит два рискованных актива и. По аналогии с соотношениями (1.10) и (1.11) получаем


где и — относительные объёмы инвестирования в активы и соответственно; и — МО доходностей активов и соответственно; и — СКО доходностей активов и соответственно и; — коэффициент корреляции доходностей активов и.

Учитывая, что, из формулы (1.15) получаем соотношения для расчёта относительных объёмов инвестирования в активы и ()


После преобразований соотношений (1.15) и (1.16) получаем уравнение гиперболы вида


где — координата вершины гиперболы по оси ординат


— длина действительной полуоси гиперболы или координата вершины гиперболы по оси абсцисс;

— длина мнимой полуоси гиперболы.

В качестве примера на рис. 1.3 представлены достижимые множества портфелей, содержащих два рискованных актива и, для коэффициентов корреляции, и.



Рис. 1.3. Достижимые множества портфелей, содержащих два рискованных актива и, для коэффициентов корреляции, и (зависимости 1, 2 и 3 соответственно)


Условия и ограничивают гиперболу точками, которые соответствуют портфелям с одним активом (,) или (,).

Анализ рис. 1.3 показывает, что достижимое множество портфелей, содержащих два рискованных актива, при располагается на дуге гиперболы (кривая 1) и при — на дуге гиперболы (кривая 2).

Портфели, соответствующие вершинам гипербол и, обладают минимально возможными значениями СКО доходностей из достижимых множеств и соответственно, причём наименьшее СКО доходности имеет место при.

В частном случае, когда активы и представляют собой совокупности ценных бумаг одного и того же эмитента, но приобретённых по разной цене (по этой причине активы отличаются МО и СКО доходности), коэффициент корреляции доходностей активов равен единице, т. е. Тогда выражение для СКО доходности портфеля преобразуется к виду


и достижимое множество вырождается в отрезок прямой (на рис. 1.3 прямая 3). Уравнение отрезка прямой имеет вид


где — тангенс угла наклона прямой; — свободный член линейной зависимости.

Координаты вершины гиперболы и соответствующие объёмы инвестирования в активы и можно определить и методом выделения экстремума функции с использованием частных производных.

Перейти на страницу:

Похожие книги

Экономика упущенных возможностей
Экономика упущенных возможностей

Третья книга из серии Библиотека журнала «Портфельный инвестор». В издание включены статьи, которые были опубликованы в журнале «Портфельный инвестор» с 2007 по 2009 год. Уникальность представленного материала заключается в том, что на основе многолетних исследований автора в области макроэкономики и финансового рынка выявлены основные системные риски отечественной экономики, предложены первоочередные меры в области позитивного развития российской экономики, показана модель зарождения финансово-экономических кризисов в странах, имеющих сырьевую зависимость, и т. д. В рубрике «Интервью» автором дана оценка экономической политике правительства России в период 2000–2008 годов. Особо следует отметить в работе предложенные сложные взаимосвязи между стоимостью сырья (нефти) и развитием мировой экономики. На статистических данных делается предположение об искусственном ценообразовании стоимости сырья на мировых биржах. Не менее интересным для читателя будет раздел «Переписка с официальными органами власти», в которой отчетливо видна близорукость финансовых властей в период благоприятной рыночной конъюнктуры на мировых сырьевых биржах. Книга адресована как профессиональным экономистам, так и людям, которым не безразлична судьба российской экономики, в том числе финансовым директорам и менеджерам. Окажет неоценимую помощь преподавателям и студентам экономических и финансовых вузов и специальностей. Небезынтересным издание будет руководителям правоохранительных органов власти, отвечающих за экономическую и политическую безопасность страны.

Павел Павлович Кравченко

Финансы
Как стать знаменитым и богатым
Как стать знаменитым и богатым

Что нужно для успешного личного пиара? – Не допускать ошибки неуверенности в себе, мультиформатности и стремлении быть на кого-то похожим.Не нужно быть «белым и пушистым».Сколько нужно заниматься личным пиаром? – Не менее одного часа в день.Какой личный пиар самый эффективный? – Не слова, но поступки.Что надо делать прямо сейчас? – Упаковаться, активничать и только после этого монетизироваться.Для кого книга? Для тех, кому жизненно необходимо, чтобы их личный бренд приносил больше денег.Ответьте честно, сколько вы зарабатываете исключительно на своей личной репутации?И какую бы сумму вы сейчас ни назвали, мы – Чермен Дзотов и Роман Масленников, – точно знаю: «Можно делать денег в 2 раза больше».Советы для специалистов, профессионалов, мастеров и Гуру своего дела, применимые как в кризис, так и в сытые годы.Прочитали – сделали.Если вы – представитель важной и нужной профессии и сейчас вы по какой-то причине недовольны вашим финансовым положением, то эта книга для вас.Адвокат, топ-менеджер, стартапер, писатель, сценарист, блогер, копирайтер, бизнес-тренер, модель, бизнес-консультант, коуч, репетитор по английскому языку, парикмахер, стилист, певец, косметолог, банщик, риэлтор, фотограф, электрик, фитнес-тренер, массажист, мастер растяжки, специалист по йоге, инструктор по вождению, диетолог, врач, ведущий мероприятий, радио-диджей, художник, психолог, психотерапевт, экстрасенс, дизайнер! Возьми в руки эту книгу, прославься и разбогатей!Для вас и ваших коллег найдется добрая сотня советов в этой книге.Вопрос в том, кто овладеет знаниями быстрее – вы или ваш конкурент? Намек понятен? Вперед!

Роман Михайлович Масленников , Чермен Дзотов

Финансы
Бизнес-ангелы. Как привлечь их деньги и опыт под реализацию своих бизнес-идей
Бизнес-ангелы. Как привлечь их деньги и опыт под реализацию своих бизнес-идей

Где взять деньги под создание нового перспективного бизнеса? Сколько стоит бизнес-идея и будет ли она работать? Эти и другие вопросы волнуют большое количество предпринимателей, нуждающихся в финансовой поддержке своих перспективных бизнес-планов. На помощь им могут прийти бизнес-ангелы.Бизнес-ангелы – это частные неформальные инвесторы, вкладывающие средства в малоизвестные молодые компании в ожидании роста их стоимости. Это состоятельные люди, обладающие не только финансовыми возможностями, но и колоссальным опытом по становлению и развитию собственного бизнеса. Привлечение капитала бизнес-ангелов является альтернативой стандартным формам инвестирования. Поднять до мирового уровня такие компании, как Apple, Body shop, Amazon, помогли в свое время именно их денежные средства.В книге в деталях описан процесс поиска и привлечения капитала бизнес-ангелов, особенности осуществления проектов с их участием. Приводятся лучшие методики организации сделок, создания команд и постановки бизнес-процессов в проинвестированных компаниях.Книга сопровождается комментариями экспертов Национального содружества бизнес-ангелов (СБАР) и других ведущих российских специалистов. Приводятся российские примеры бизнес-ангельского инвестирования.Издание будет полезно для предпринимателей на любой стадии развития бизнеса, а также самим бизнес-ангелам – действующим и потенциальным.

Брайан Хилл , Ди Пауэр

Финансы / Финансы и бизнес / Ценные бумаги