До Пирсона наука имела дело с «реальными» вещами – скажем, с законами, описывающими движение планет или кровоток лошадей (примеры взяты из книги Дэвида Салсберга «Дама, пробующая чай» (David Salsburg,
Случайность, описываемая распределениями вероятностей
Гипотеза, согласно которой сами измерения характеризуются неким распределением вероятностей, ознаменовала существенный сдвиг по сравнению с теми временами, когда случайность считали ограниченной лишь погрешностями измерения. Подход Пирсона весьма полезен, ибо позволяет оценивать, насколько вероятно то, что мы видим, – исходя из условий распределения. Сегодня такой подход – наш главный инструмент при оценке того, насколько вероятно, что определенное объяснение верно.
Так мы можем, к примеру, количественно оценить вероятность того, что лекарство окажется эффективным, или того, что частицу удастся зафиксировать в ускорителе. Является ли ноль центром распределения среднего отклика при сравнении результатов той группы, которой давали препарат, и контрольной группы (которой препарата не давали)? Если это кажется вероятным, мы вправе высказать скептицизм касательно эффективности препарата. Отстоят ли исследуемые сигналы настолько далеко от распределения для известных частиц, чтобы принадлежать к иному распределению, а значит, давать основания полагать, что их создает какая-то новая частица? Обнаружение бозона Хиггса потребовало подобной вероятностной интерпретации данных, чтобы отличить хиггсовские сигналы от сигналов, соответствующих другим событиям. Главное во всех подобных случаях – определить характеристики статистического распределения, которое лежит в основе интересующего нас явления.
Пирсон напрямую включил случайность в распределение вероятностей, что позволяет нам критически подходить к оценке возможности тех или иных событий и количественно выражать нашу уверенность в тех или иных объяснениях. Благодаря открытию Пирсона мы можем эффективнее оценивать, когда наблюдаемые нами явления имеют особое значение, а когда – нет. А значит, нам лучше удается достигать своих целей – не овечьих, а человечьих.
Универсальная машина Тьюринга
Глория Оригги
Философ (Национальный центр научных исследований, Париж); редактор книги
«Есть многое на свете, друг Горацио, что вашей философии не снилось»[86]
, – говорит Гамлет своему приятелю. Изящное резюме, которое преследует нас в жизни. Один из самых замечательных научных экспериментов всех времен и народов подводит нас к тому же печальному выводу: некоторые математические проблемы попросту неразрешимы.В 1936 году британский математик Алан Тьюринг придумал самую простую и изящную вычислительную машину на свете, устройство (которое он позже описал в своей статье 1948 года «Разумная машина»), наделенное
Итак, перед нами абстрактная машина, порожденная гением для того, чтобы справиться с неразрешимой проблемой –