В пятых, время в четырехмерном пространстве становится величиной
Этот странный с житейской точки зрения вывод был неоднократно проверен экспериментально. Были измерены времена жизни неустойчивых (распадающихся на части) элементарных частиц в зависимости от скорости их движения. Оказалось, что чем ближе скорость частицы к скорости света, тем больше времени она живет.
Подобно плоской геометрии Евклида, псевдоевклидова геометрия приводит к тривиальным уравнениям движения тел отсчета (вспомним, что это уравнения движения свободных тел) и, соответственно, к отсутствию каких-либо уравнений поля. Можно сказать, что псевдоевклидова геометрия представляет собой четырехмерную модель «абсолютного вакуума». Эта модель соответствует реальности в пределе, когда массы тел отсчета стремятся к нулю.
1.4. Относительность сил и полей в теории гравитации Эйнштейна.
До сих пор мы рассматривали пространство событий инерциальных систем отсчета. Сначала это были инерциальные системе механики Ньютона, которые движутся прямолинейно и равномерно без вращения относительно друг друга.
Пространство событий таких систем отсчета трехмерно и обладает геометрией Евклида. Затем, мы рассмотрели пространство событий инерциальных систем отсчета, которые движутся со скоростями, близкими к скорости света. В этом случае геометрия пространства событий оказалась четырехмерной, псевдоевклидовой. Обе эти геометрии описывают пустоту или абсолютный вакуум, где нет никакой материи или вообще чего-либо.
Перейдем теперь к описанию ускоренных систем отсчета, в частности к локально инерциальным системам без вращения. Что это за системы отсчета?
Представим себе космический корабль, который движется вокруг Земли по стационарной орбите без собственного вращения. В корабле находится космонавт в состоянии невесомости
Рис. 4. Ускоренная система отсчета В,связана с космическим кораблем. Корабль совершает свободный полет на стационарной орбите и движется без собственного вращения. Система отсчета Анаходится на Земле. Наблюдатели Аи Визмеряют координаты до космонавта, находясь каждый в своей системе отсчета, и получают разные уравнения движения космонавта.
Предположим теперь, что на корабле находится наблюдатель В и измеряет координаты космонавта относительно системы отсчета, связанной с космическим кораблем. Он заметит, что внутри корабля космонавт либо покоится относительно стенок корабля, либо будет двигаться прямолинейно и равномерно, так, как будто никакие силы на космонавта не действуют. На самом же деле на космонавта действуют две силы, которые компенсируют друг друга. Одна из них все та же гравитационная сила F
g, а другая F
i- сила инерции (
Теперь понятно, как определить ускоренную локально инерциальную систему отсчета первого рода. Это такая ускоренная система, в которой