Этот результат, который получил название «теорема о минимаксе», впервые сформулировал математик Принстонского университета, человек энциклопедических знаний Джон фон Нейман. Впоследствии в соавторстве с экономистом Принстонского университета он развил эту идею в классической книге Theory of Games and Economic Behavior[64]
, которая и положила начало теории игр.Теорема о минимаксе гласит, что в играх с нулевой суммой, в которых интересы игроков прямо противоположны (выигрыш одного означает проигрыш другого), один игрок должен стремиться к тому, чтобы минимизировать максимальный выигрыш соперника, тогда как его соперник стремится максимизировать свой минимальный выигрыш. Такой подход к ведению игры приводит к поразительному выводу: минимальный из максимальных выигрышей (минимакс) эквивалентен максимальному из минимальных выигрышей (максимин). Общее доказательство теоремы достаточно сложное, но результат полезен и его стоит запомнить. Если все, что вам нужно знать, – это выигрыш одного игрока или проигрыш другого в случае, когда оба применяют во время игры оптимальное смешивание стратегий, необходимо только рассчитать оптимальную пропорцию смешивания стратегий для одного из них и определить результат такого смешивания.
Теория и реальность
Насколько близки показатели реальных игроков, выполняющих штрафной удар, и вратарей нашим теоретическим расчетам соответствующих оптимальных смешанных стратегий? Обратите внимание на таблицу, составленную по данным, которые получил Игнасио Паласиос Уэрта, а также по данным наших расчетов[65]
.Неплохо, не правда ли? Во всех случаях фактический процент стратегии «слева» в смешанной стратегии достаточно близок к оптимальному. Фактические смешанные стратегии обеспечивают почти одинаковый процент положительных результатов при любом выборе другого игрока, а значит, делают первого игрока неуязвимым к попыткам эксплуатации, предпринимаемым другим игроком.
Аналогичные доказательства совпадения фактических результатов игры и теоретических прогнозов были получены в процессе анализа профессиональных теннисных матчей высшего уровня[66]
. В этом нет ничего удивительного. Одни и те же люди регулярно играют друг против друга и изучают методы соперника, поэтому любая более или менее очевидная схема будет замечена и использована противником с выгодой для себя. Ставки же в таких матчах очень высоки в плане денег, достижений и славы; следовательно, игроки весьма заинтересованы в том, чтобы не совершать ошибок.Тем не менее теория игр не всегда обеспечивает благоприятный исход. Далее в этой главе мы проанализируем, насколько эффективен или неэффективен метод смешивания стратегий в других играх и почему. Но сначала давайте кратко сформулируем то, о чем шла речь, в виде очередного правила:
ПРАВИЛО № 5: в игре с чистым конфликтом (игре с нулевой суммой), если вам невыгодно заранее раскрывать сопернику свой фактический выбор, следует случайным образом выбрать одну из имеющихся у вас чистых стратегий. Смешивать стратегии нужно в такой пропорции, чтобы соперник не смог извлечь для себя выгоду из вашего выбора, придерживаясь любой из имеющихся в его распоряжении чистых стратегий. Иными словами, вы получаете один и тот же средний выигрыш, если ваша смешанная стратегия противопоставлена каждой из чистых стратегий соперника
{79}.Если один игрок придерживается этого правила, другой не сможет добиться большего выигрыша, применив одну из своих чистых стратегий. Следовательно, для него не имеет большого значения, какую именно стратегию выбрать, и единственное, что ему остается сделать, – это использовать смешанную стратегию, предписанную ему тем же правилом. Когда этого правила придерживаются оба игрока, ни один из них не сможет добиться большего выигрыша, отклонившись от данной линии поведения. Это полностью соответствует определению равновесия Нэша, представленному в главе 4
. Иными словами, в ситуации, когда оба игрока следуют этому правилу, мы имеем равновесие Нэша в смешанных стратегиях. Следовательно, теорему о минимаксе Неймана – Моргенштерна можно рассматривать как частный случай более общей теории Нэша. Теорема о минимаксе применима только к играм с нулевой суммой, рассчитанным на двух игроков, тогда как концепцию равновесия Нэша допускается использовать в играх с любым числом игроков и любым сочетанием конфликта и общности интересов.