Разъяснять стратегию тренера необходимо еще до ее применения в том или ином матче. Тренер должен донести до всеобщего сведения тот факт, что прорыв с мячом посередине поля остается элементом осторожной и методичной схемы игры именно благодаря отвлечению части игроков защищающейся команды на оборону от случайного длинного паса, который может обойтись команде слишком дорого. Однако мы допускаем, что даже если накануне игры тренер во всеуслышание заявит об этом во всех газетах и на всех телеканалах, а затем использует длинный пас, который окажется неудачным, на него все равно обрушится лавина критики, как если бы он и не пытался объяснить широкой публике элементы теории игр.
Смешивание стратегий в неантагонистических играх
До сих пор мы рассматривали в этой главе только антагонистические игры, в которых интересы игроков полностью противоположны: игры с нулевой суммой или игры с постоянной суммой. Однако мы неизменно подчеркиваем, что в реальной жизни интересы людей могут совпадать, а могут и противоречить друг другу. Играет ли смешивание стратегий значимую роль в играх с ненулевой суммой? Да, но с некоторыми условиями.
В качестве иллюстрации еще раз рассмотрим охотничью версию игры «семейный спор», о которой шла речь в главе 4
. Вспомните наших отважных охотников Фреда и Барни, которые решают (каждый в своей пещере), на какого зверя им охотиться – на оленя или на бизона. Удачная охота требует совместных усилий обоих охотников, поэтому, если они выберут противоположные варианты, никто из них не добудет мяса. И Фред, и Барни заинтересованы в том, чтобы предотвратить такой итог. Однако помимо двух вариантов благополучного исхода (при условии, что они охотятся на одном участке) нужно учесть, что Фред отдает предпочтение мясу оленя и оценивает результат совместной охоты на этого зверя как четыре вместо трех единиц мяса, тогда как у Барни противоположные предпочтения. Следовательно, таблица их выигрышей выглядит так:Как мы уже убедились, в этой игре есть два равновесия Нэша; в таблице они выделены серым цветом. Теперь мы назвали бы их равновесиями в чистых стратегиях. Но возможно ли такое равновесие в игре со смешанной стратегией?
По каким причинам Фред выбрал бы смешанную стратегию? Возможно, он не уверен в том, что именно выберет Барни. Если под влиянием этих субъективных сомнений Фред оценивает число случаев, когда Барни выберет охоту на оленя и на бизона, как
Всегда ли такое равновесие обеспечивает удовлетворительный результат? Нет. Проблема в том, что два охотника делают свой выбор независимо друг от друга. Следовательно, Фред выберет охоту на оленя, тогда как Барни выберет охоту на бизона, в 4/7 x 4/7 = 16/49 случаях, и наоборот – в 3/7 x 3/7 = 9/49 случаях. Таким образом, в 25/49 или немногим более половины случаев два охотника окажутся на разных участках и получат нулевой выигрыш. Воспользовавшись приведенными формулами, мы увидим, что каждый из них получит выигрыш в размере 4 x 3/7 + 0 x 4/7 = 12/7 1,71, что меньше выигрыша 3 в случае неблагоприятного равновесия в чистых стратегиях.