Читаем Теория игр в комиксах полностью

Вероятность того, что «ястреб» окажется в паре с «голубем», равна (1-р). Этот противник не станет вступать в схватку с агрессивным «ястребом», так что «голубь» получает весь выигрыш без физического боя и его выигрыш составляет 20.



Таким образом, ожидаемая эволюционная приспособленность «ястреба» равняется сумме вероятности встречи с каждым из двух противников, умноженная на выигрыш в случае встречи:




С помощью расчетов, приведенных на последних двух страницах, можно сказать, что ожидаемая эволюционная приспособленность «ястреба» выше, чем у «голубя», если:

20 – 22р > 10 – 10р

или

10 > 12 р

->

10/12 > р

->

5/6 > p

Если часть популяции, запрограммированная на поведение «ястреба» (р), меньше ⅚, то вероятность встречи двух «ястребов» и их схватки настолько мала, что ее перевешивает выгода от получения всего выигрыша при встрече с «голубем». Таким образом, со временем часть популяции «ястребов» (р) увеличится благодаря силам эволюции.

Если особей с поведением «ястреба» в популяции больше ⅚ (то есть, если р > ⅚), то «голуби» будут выживать и размножаться в больших количествах, чем «ястребы», так что часть популяции, запрограммированная на поведение «ястребов», (р) уменьшится.



В долгосрочной перспективе силы эволюции спровоцируют изменение в количестве особей каждого типа. Численность «ястребов» будет стремиться к ⅚ от всей популяции, а «голубей» – к ⅙. Мы имеем дело с такими точными пропорциями благодаря числам, которые мы указывали в платежной матрице. Однако как только цена конфликта станет выше ценности желанной добычи, эволюционные силы внесут свои коррективы в популяцию и заставят «голубей» и «ястребов» сосуществовать.

В долгосрочной перспективе «ястребы» и «голуби» будут сосуществовать в рамках одной популяции в соотношении 5 к 1, при этом оба вида в среднем будут нормально функционировать. При столкновении с «голубями» «ястребы» будут присваивать все ресурсы, но возможность серьезных увечий для них будет очень высока при схватке с другими «ястребами». «Голуби» не смогут удержать ресурсы, когда окажутся в паре с «ястребами», но никогда не пострадают в бою.

Такое долгосрочное эволюционное «устойчивое состояние», при котором количество «ястребов» в популяции равно ⅚, называется эволюционно стабильным равновесием. Это такое равновесие, которое сохраняет свою стабильность, даже если мы добавляем к одной группе животных некое количество особей, запрограммированных по-другому, в силу того, что эволюционные силы рано или поздно восстанавливают равновесие.



Вообще в эволюционных играх может быть множество исходов. В «Ястребах и голубях» наблюдается единственное эволюционно стабильное равновесие, а долгосрочное устойчивое состояние рано или поздно будет восстановлено, вне зависимости от того, сколько запрограммированных по-другому особей мы добавим.

Однако в некоторых играх возможно более чем одно эволюционно стабильное равновесие. В таких играх силы эволюции восстановят пропорции равновесия, если наблюдаются незначительные изменения в популяции. Но крупные изменения в составе популяции могут повлечь за собой совсем иное равновесие.



Некоторые игры вообще не имеют эволюционно стабильного равновесия. В таких играх популяция никогда не добьется стабильного устойчивого состояния. Наоборот, она окажется под влиянием цикличных изменений, при которых группы различных видов животных будут бесконечно то увеличиваться, то уменьшаться.

Эволюционная стабильность как усовершенствование равновесия

Интересно то, что эволюционно стабильное соотношение «ястребов» к остальной популяции (⅚) также было бы равно равновесной вероятности в равновесии Нэша в смешанных стратегиях, если бы животные выбирали стратегии рационально. И это не совпадение. Чтобы рассчитать равновесные вероятности в равновесии Нэша в смешанных стратегиях, мы должны найти такие вероятности, при которых игрокам безразлично, что выбрать – линию поведения «ястреба» или «голубя». В равновесии ожидаемые ценности обеих стратегий равны.

В «Ястребах и голубях» мы имеем дело с таким же уровнем ожидаемой эволюционной приспособленности обоих видов животных в эволюционно стабильных равновесных соотношениях. Если бы их приспособленность различалась, силам эволюции пришлось бы выделить один вид животных, существование которого было бы намного более благоприятным, чем у другого, вплоть до момента, когда было бы достигнуто устойчивое состояние.



В «Ястребах и голубях» эволюционно стабильное равновесие создает соотношение «ястребов» и «голубей» в рамках популяции, что похоже на интерпретацию равновесия Нэша в смешанных стратегиях в игре «Уклонение от уплаты налогов». В том случае равновесие создавало соотношение уклонистов и законопослушных налогоплательщиков, а решения, которые принимали игроки, были рациональными.

Перейти на страницу:

Все книги серии Бизнес в комиксах

Теория игр в комиксах
Теория игр в комиксах

Теория игр представляет собой набор инструментов, применяемых для анализа ситуаций, в которых лучшая стратегия одного человека зависит от действий, в том числе ожидаемых, других людей. Благодаря теории игр мы можем понять, как люди действуют в ситуациях взаимной зависимости. От социальной жизни до бизнес-решений, глобальной политики и эволюционной биологии – во всех этих сферах действуют законы, которые не случайны, а определяются закономерностями вероятности. Мы сталкиваемся с обстоятельствами и действуем исходя из представлений, которые обусловлены именно теорией игр. Изучите ее полностью, чтобы распутать больше головоломок жизни!

Айван Пастин , Тувана Пастин , Тувана Пастин Пастин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочее / Изобразительное искусство, фотография

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное