Читаем Теория катастроф полностью

где ρ (х, у) — расстояние от точки (х, у) до угла у ≥ с | х | (рис. 62). Число с > 0 является модулем (инвариантом): оболочки, соответствующие разным с, не сводятся одна к другой гладким преобразованием.

Рис. 61. Типичные особенности выпуклых оболочек пространственных кривых

Особенности выпуклых оболочек в пространстве большей размерности мало изучены. Согласно В. Д. Седых, выпуклая оболочка общего k-мерного многообразия в пространстве размерности выше к+2 имеет модули, являющиеся функциями к переменных.

Рис. 62. Типичные особенности выпуклых оболочек поверхностей

Тень, отбрасываемая бесконечно-гладким или даже аналитическим выпуклым телом, может, как это ни кажется странным, иметь особенности. А именно, граница тени трехмерного выпуклого тела может иметь разрывы третьей производной, а тела размерности 4 и выше — даже второй (И. А. Богаевский, 1990).

Много новых интересных особенностей возникает в оптимизационных задачах с ограничениями, например в задаче об обходе препятствия. Их исследование привело к новым результатам в одной из самых классических областей математики — геометрии гладких поверхностей в трехмерном пространстве.

<p><strong>12. Гладкие поверхности и их проектирования</strong></p>

Гладкая кривая на плоскости может иметь касательную со сколь угодно большим числом точек касания (рис. 63), но это не в случае общего положения. Малым шевелением кривой можно добиться того, что никакая прямая не будет касаться ее более чем в двух точках.

Рис. 63. Тройная касательная нетипичной кривой

В скольких точках может касаться прямой поверхность общего положения? Немного подумав или поэкспериментировав, читатель может убедиться, что наибольшее число точек касания равно четырем; сохраняя три точки касания, прямую можно двигать, две — двигать в двух направлениях.

Порядок касания прямой с кривой или поверхностью также может быть различным (например, порядок касания оси х с графиком у = х2 первый, х3 — второй и т. д.) Плоская кривая общего положения не имеет касательных выше второго порядка (второй порядок касания встречается в отдельных точках кривой, называемых точками перегиба).

Для поверхности в пространстве дело обстоит уже не так просто. В точках, близ которых поверхность не выпукла, имеются касательные выше первого порядка (они называются асимптотическими касательными). Для поверхности общего положения касательные третьего порядка имеются на некоторой линии, а четвертого — в отдельных точках; касательных выше четвертого порядка общая поверхность не имеет.

Все точки поверхности общего положения делятся по порядкам касательных на следующие 7 классов (рис. 64):

1) область эллиптических точек (все касательные порядка 1);

2) область гиперболических точек (две асимптотические касательные).

Эти две области разделяет общая граница:

3) линия параболических точек (одна асимптотическая касательная).

Рис. 64. Классификация точек на гладкой поверхности

Внутри области гиперболичности выделяется особая линия:

4) кривая перегиба асимптотических линий (есть касательная третьего порядка).

Наконец, на этой кривой выделены еще особые точки трех типов:

5) точка двойного перегиба касательная четвертого порядка;

6) перегиб обеих асимптотических линий (две касательные третьего порядка);

7) обилие точки линий 3) и 4).

Для поверхностей общего положения в точках 6) происходит пересечение двух ветвей линии перегибов под ненулевым углом, а в точках 7) — касание (первого порядка) линий 3) и 4).

Описанная классификация точек поверхности (О. А. Платонова, Е. Е. Ландис) следующим образом связана с классификацией особенностей волновых фронтов.

Математики называют точками объекты любой природы. Рассмотрим, например, множество всех невертикальных прямых на плоскости (х, у).

Такие прямые задаются уравнениями вида у = ах + b. Следовательно, одна прямая определяется парой чисел (а, b) и может рассматриваться как точка плоскости с координатами (а, b). Эта плоскость называется двойственной к исходной плоскости. Ее точки — это прямые исходной плоскости.

Если на исходной плоскости дана гладкая кривая, то в каждой ее точке имеется касательная прямая. При движении точки вдоль кривой касательная меняется, следовательно, движется точка двойственной плоскости. Таким образом, на двойственной плоскости возникает кривая — множество всех касательных исходной кривой. Эта кривая называется двойственной к исходной.

Если исходная кривая гладкая и выпуклая, то двойственная кривая тоже гладкая, если же исходная кривая имеет точку перегиба, то на двойственной кривой ей соответствует точка возврата (рис, 65).

Рис. 65. Двойственность точек перегиба и возврата

Перейти на страницу:

Похожие книги

Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература