Читаем Теория катастроф полностью

1. Градиентное отображение. Рассмотрим в евклидовом пространстве гладкую функцию. Градиентным отображением называется отображение, сопоставляющее точке значение градиента функции в ней. Градиентные отображения — весьма специальный класс отображений пространств одинаковой размерности.

Особенности градиентных отображений общего положения отличны от общих особенностей отображений пространств одинаковых размерностей: их "меньше" потому, что не всякое отображение можно реализовать как градиентное, но "больше" потому, что явление, не типичное для общих отображений, может быть типичным для градиентных.

2. Нормальное отображение. Рассмотрим множество всех векторов нормалей к поверхности в трехмерном евклидовом пространстве. Сопоставим каждому вектору его конец (вектору р, приложенному в точке q, сопоставляем точку р + q). Мы получаем отображение трехмерного многообразия векторов нормалей в трехмерное пространство (n-мерного в n-мерное, если начать с подмногообразия любой размерности в n-мерном евклидовом пространстве).

Это отображение называется нормальным отображением исходного многообразия. Особенности нормальных отображений подмногообразий общего положения составляют специальный класс особенностей отображений пространств одинаковой размерности. Критические значения нормального отображения образуют каустику (геометрическое место центров кривизны) исходного подмногообразия: см. рис. 33, где исходное многообразие — эллипс.

3. Гауссово отображение. Рассмотрим двустороннюю поверхность в трехмерном евклидовом пространстве. Перенесем единичные векторы положительных нормалей из каждой точки поверхности в начало координат. Концы этих векторов лежат на единичной сфере. Полученное отображение поверхности на сферу называется гауссовым отображением.

Гауссовы отображения составляют еще один специальный класс отображений многообразий одинаковой размерности (n — 1, если начинать с гиперповерхности в n-мерном пространстве).

И вот оказывается, что типичные особенности отображений всех этих трех классов (градиентных, нормальных и гауссовых) одинаковы: все три теории — частные случаи общей теории лагранжевых особенностей в симплектической геометрии.

Симплектическая геометрия — это геометрия фазового пространства (пространства координат и импульсов классической механики). Она явилась итогом длительного развития механики, вариационного исчисления и т. д.

В прошлом веке эту область геометрии называли аналитической динамикой, и Лагранж гордился, что изгнал из нее чертежи. Чтобы проникнуть в симплектическую геометрию, минуя длинный исторический путь, проще всего воспользоваться аксиоматическим методом, имеющим, как заметил Б. Рассел, много преимуществ, подобных преимуществам воровства перед честным трудом.

Сущность этого метода состоит в том, чтобы превращать теоремы в определения. Содержательная часть теоремы становится тогда мотивировкой определения, и алгебраисты ради повышения авторитета своей науки ее обычно опускают (понять немотивированное определение невозможно, но многие ли из пассажиров самолета знают, как и почему он изготовлен?).

Теорема Пифагора, бывшая в свое время высшим достижением математической культуры, низведена в современном аксиоматическом изложении евклидовой геометрии до малозаметного определения: евклидовой структурой в линейном пространстве называется линейная по каждому аргументу симметрическая функция пары векторов (скалярное произведение), для которой скалярный квадрат любого ненулевого вектора положителен.

Определение симплектической структуры в линейном пространстве аналогично: это линейная по каждому аргументу кососимметрическая функция пары векторов (кососкалярное произведение), которая невырождена (любой ненулевой вектор не всем векторам косоортогонален, т. е. его кососкалярное произведение с некоторыми векторами ненулевое).

Пример. Назовем кососкалярным произведением двух векторов на ориентированной плоскости ориентированную площадь параллелограмма, натянутого на эти векторы (т. е. определитель матрицы, составленной компонент векторов). Это произведение — симплектическая структура на плоскости.

В трехмерном пространстве (и вообще в нечетномерном пространстве) симплектических структур нет. Симплектическую структуру в четырехмерном (и вообще в четномерном) пространстве легко построить, представив пространство в виде суммы двухмерных плоскостей: кососкалярное произведение распадается в сумму площадей проекций на эти плоскости.

Все симплектические пространства фиксированной размерности изоморфны (как и все евклидовы). Мы будем называть кососкалярное произведение двух векторов "площадью" натянутого на них параллелограмма.

Перейти на страницу:

Похожие книги

Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература