Каждое линейное пространство в евклидовом пространстве имеет
В симплектическом пространстве определено
Линейное подпространство, являющееся своим собственным косоортогональным дополнением, называется
Точно так же
Риманова структура на многообразии позволяет измерять длины кривых на нем, суммируя длины малых векторов, составляющих кривую. Точно так же симплектическая структура позволяет измерять "площади" ориентированных двухмерных поверхностей, лежащих в симплектическом многообразии (суммируя "площади" составляющих поверхность малых параллелограммов). Дополнительное условие, связывающее симплектические структуры в разных касательных пространствах, таково: "площадь" всей границы любой трехмерной фигуры равна 0.
В линейном симплектическом пространстве можно ввести структуру симплектического многообразия, определив кососкалярное произведение приложенных в любой точке векторов как кососкалярное произведение векторов, полученных из них параллельным переносом в начало. Легко проверить, что условие согласования здесь выполнено.
Существует много неизоморфных друг другу римановых структур в окрестности точки плоскости или пространства большего числа измерений (для различения их Риман и ввел свою кривизну).
В отличие от римановых многообразий
Подмногообразие симплектического пространства называется
Расслоение симплектического пространства на подмногообразия называется
Всякое лагранжево расслоение локально изоморфно стандартному расслоению фазового пространства над конфигурационным, (р, q) → q (слои — пространства импульсов, q = const). Конфигурационное q-пространство называется базой этого расслоения.
Предположим теперь, что в пространстве лагранжева расслоения дано еще одно лагранжево многообразие. Тогда возникает гладкое отображение этого лагранжева многообразия на базу лагранжева расслоения (т. е. на конфигурационное пространство с координатами qi): каждой точке (р, q) лагранжева многообразия сопоставляется точка q конфигурационного пространства.
Полученное отображение многообразий одинаковой размерности n называется
Это — специальный класс особенностей гладких отображений многообразий одинаковой размерности. Для этого класса построена классификационная теория, аналогичная общей теории особенностей.
При n = 2 лагранжевы особенности общего положения исчерпываются складками и сборками, как и общие особенности (впрочем, лагранжева сборка имеет два лагранжево неэквивалентных[7] варианта).
Особенности лагранжевых отображений трехмерных лагранжевых многообразий общего положения уже не все встречаются среди обычных особенностей общего положения.
Теперь мы покажем, что
1. Пусть F — гладкая функция от р. Тогда многообразие q = ∂F/∂p лагранжево. Поэтому особенности градиентного отображения лагранжевы.