2. Рассмотрим гладкое подмногообразие в евклидовом пространстве. Рассмотрим множество всех перпендикулярных ему векторов (во всех его точках q). Многообразие, образованное векторами р, приложенными в точках р + q, лагранжево. Нормальное отображение можно рассматривать как лагранжево отображение этого многообразия на базу, (р, р + q) → (р + q).
3. Рассмотрим многообразие всех ориентированных прямых в евклидовом пространстве. Это многообразие симплектическое, так как его можно рассматривать как фазовое пространство движения точки по сфере (направление прямой определяет точку на сфере, а точка пересечения прямой с перпендикулярной ей касательной плоскостью сферы — величину импульса).
Рассмотрим многообразие ориентированных нормалей к поверхности в нашем пространстве. Это подмногообразие в симплектическом многообразии прямых лагранжево. Гауссово отображение можно рассматривать как лагранжево отображение (отображение проектирования построенного подмногообразия на сферу, являющуюся базой лагранжева расслоения фазового пространства).
Таким образом, теории градиентных, нормальных и гауссовых особенностей сводятся к теории лагранжевых особенностей.
Встретившаяся нам в конце симплектическая структура многообразия ориентированных прямых — не столь искусственное образование, как это кажется на первый взгляд. Дело в том, что множество решений любой вариационной задачи (или вообще множество решений уравнений Гамильтона с фиксированным значением функции Гамильтона) образует симплектическое многообразие, очень полезное для исследования свойств решений.
Рассмотрим, например, двухпараметрическое семейство лучей, срывающихся с геодезических на поверхности препятствия в трехмерном пространстве, как это указано на рис, 72, Это семейство оказывается двухмерным лагранжевым подмногообразием четырехмерного пространства всех лучей. Но в отличие от ранее встречавшихся нам лагранжевых подмногообразий это лагранжево многообразие само имеет особенности. Особенности эти проявляются там, где срывающийся луч — асимптотический для поверхности препятствия, Такие лучи образуют ребро возврата (типа х2 = у3) лагранжева многообразия срывающихся лучей.
На этом ребре возврата есть еще особые точки, в окрестности которых многообразие срывающихся лучей устроено как раскрытый ласточкин хвост (поверхность в четырехмерном пространстве многочленов х5 + ах3 + bх2 + сх + d, образованная многочленами с трехкратными корнями).
Эта поверхность встречается также в других задачах теории особенностей (например, при исследовании заметания каустики ребрами возврата движущихся волновых фронтов) и является, видимо, одним из основных примеров будущей теории лагранжевых многообразий с особенностями,
В евклидовой и в римановой геометрии имеется обширная теория внешней кривизны: кроме внутренних свойств подмногообразия, определяемых его метрикой, имеются еще различия в расположении подмногообразий с одинаковыми внутренними геометриями в объемлющем пространстве.
В симплектической геометрии, как недавно доказал А. Б, Гивенталь, дело обстоит проще: внутренняя геометрия (сужение симплектической структуры на множество касательных векторов к подмногообразию) определяет внешнюю. Иными словами,
Здесь открывается новая глава теории особенностей — исследование особенностей расположения подмногообразий в симплектическом пространстве, на важность которого обратил внимание Р. Мельроз в недавних работах по дифракции. Начало классификации таких особенностей получается, по теореме Гивенталя, из результатов Ж. Мартине и его последователей о вырождениях симплектической структуры. Например, двухмерное подмногообразие общего положения в четырехмерном симплектическом пространстве локально приводится сохраняющим симплектическую структуру преобразованием к одной из двух нормальных форм:
р2 = q2 = 0 или q1 = 0, р2 = р21.
На нечетномерных многообразиях не бывает симплектических структур, но зато бывают контактные. Контактная геометрия играет для оитики и теории распространения волн такую же роль, как симплектическая для механики.
Контактная структура на нечетномерном многообразии определяется выбором в касательном пространстве в каждой точке гиперплоскости (подпространства коразмерности один). Два поля гиперплоскостей на многообразии фиксированной размерности локально эквивалентны (переводятся друг в друга диффеоморфизмом), если только оба они общего положения вблизи изучаемых точек.