Читаем Теория катастроф полностью

Изложенные выше общие соображения принадлежат А. Пуанкаре и применимы не только к исследованию положений равновесия эволюционных систем, но к большей части всего математического анализа. Хотя они были высказаны уже сто лет назад, успехи в реализации намеченной А. Пуанкаре программы теории бифуркаций остаются в большинстве областей анализа довольно скромными, отчасти в силу больших математических трудностей, отчасти же вследствие психологической инерции и засилья аксиоматико-алгебраического стиля.

Вернемся, однако, к положениям равновесия эволюционных систем. К настоящему времени решенным можно считать лишь вопрос о перестройках фазовых кривых при бифуркациях положений равновесия в однопараметрических семействах общего положения; уже случай двух параметров выходит за рамки возможностей сегодняшней науки.

Рис. 13. Кривая равновесий однопараметрического семейства систем

Результаты исследования общего однопараметрического семейства суммированы на рис. 13 — 18. На рис. 13 изображено однопараметрическое семейство эволюционных процессов с одномерным фазовым пространством (по оси абсцисс отложено значение параметра ε, по оси ординат — состояние процесса х).

Рис. 14. Превращение нетипичных бифуркаций в типичные при малом шевелении семейства

Для однопараметрического семейства общего положения равновесия при всевозможных значениях параметра образуют гладкую кривую (Г на рис. 13, в более общем случае размерность многообразия состояний равновесия равна числу параметров). В частности, это означает, что изображенные на рис. 14 слева бифуркации в семействе общего положения не встречаются: при малом изменении семейства Г превращается в гладкую кривую одного из изображенных на рис. 14 справа типов[3].

Проектирование кривой Г на ось значений параметра в случае однопараметрического семейства имеет лишь особенности типа складки (при большем числе параметров появляются и более сложные особенности теории Уитни: например, в общих двупараметрических семействах проектирование поверхности равновесий Г на плоскость значений параметров может иметь точки сборки, где сливаются три положения равновесия).

Таким образом, при изменении параметра выделяются особые или бифуркационные значения параметра (критические значения проекции, a, b, с, d на рис. 13). Вне этих значений положения равновесия гладко зависят от параметров. При подходе параметра к бифуркационному значению положение равновесия "умирает", слившись с другим (или же "из воздуха" рождается пара положений равновесия).

Из двух рождающихся (или умирающих) вместе положений равновесия одно устойчиво, другое неустойчиво.

В момент рождения (или смерти) оба положения равновесия движутся с бесконечной скоростью: когда значение параметра отличается от бифуркационного на ε, оба близких положения равновесия удалены друг от друга на расстояние порядка √ε.

На рис. 15 изображена перестройка семейства фазовых кривых на плоскости в общем однопараметрическом семействе. Устойчивое положение равновесия ("узел") сталкивается при изменении параметра с неустойчивым ("седлом"), после чего оба исчезают. В момент слияния на фазовой плоскости наблюдается картина необщего положения ("седло-узел").

На рис. 15 видно, что перестройка, в сущности, одномерная: вдоль оси абсцисс происходят те же явления, что на оси х на рис. 13, а вдоль оси ординат перестройки нет вовсе. Таким образом, перестройка через седло — узел получается из одномерной перестройки "надстраиванием" оси ординат. Оказывается, вообще все перестройки положений равновесия в общих однопараметрических системах получаются из одномерных перестроек аналогичным надстраиванием.

Рис. 15. Седло-узел: типичная локальная бифуркация в одно- параметрическом семействе

Если устойчивое положение равновесия описывает установившийся режим в какой-либо реальной системе (скажем, экономической, экологической или химической), то при его слиянии с неустойчивым положением равновесия система должна совершить скачок, перескочив на совершенно другой режим: при изменении параметра равновесное состояние в рассматриваемой окрестности исчезает. Скачки этого рода и привели к термину "теория катастроф".

<p><strong>6. Потеря устойчивости равновесных и автоколебательных режимов</strong></p>

Потеря устойчивости состояния равновесия при изменении параметра не обязательно связана с бифуркацией самого состояния равновесия: оно может терять устойчивость не только сталкиваясь с другим, но и самостоятельно.

Соответствующая перестройка фазового портрета на плоскости изображена на рис. 16. Возможны два варианта.

Рис. 16. Бифуркация рождения цикла

А. При изменении параметра из положения равновесия рождается предельный цикл (радиуса порядка √ε, когда значение параметра отличается от бифуркационного на ε). Устойчивость равновесия переходит к циклу, само же равновесие становится неустойчивым.

Перейти на страницу:

Похожие книги

Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература