Читаем Теория катастроф полностью

Б. В положении равновесия умирает неустойчивый предельный цикл; область притяжения положения равновесия уменьшается с ним до нуля, после чего цикл исчезает, а его неустойчивость передается равновесному состоянию.

А. Пуанкаре заметил, а А. А. Андронов и его ученики еще до войны (в 1939 г.) доказали, что, кроме описанной выше (п. 5) потери устойчивости положений равновесия сливающихся с неустойчивыми, и только что описанных способов потери устойчивости типа А или Б в общих однопараметрических семействах систем с двухмерным фазовым пространством никаких иных видов потери устойчивости не встречается. Позже было доказано, что и в системах с фазовым пространством большей размерности потеря устойчивости положений равновесия при изменении одного параметра происходит каким-либо из описанных выше способов (по направлениям всех дополнительных осей координат при изменении параметра равновесие остается притягивающим).

Если наше положение равновесия — установившийся режим в реальной системе, то при изменении параметра в случаях А и Б наблюдаются следующие явления.

А. После потери устойчивости равновесия установившимся режимом оказывается колебательный периодический режим (рис. 17); амплитуда колебаний пропорциональная квадратному корню из закритичности (отличия параметра от критического значения, при котором равновесие теряет устойчивость).

Этот вид потери устойчивости называется мягкой потерей устойчивости, так как устанавливающийся колебательный режим при малой закритичности мало отличается от состояния равновесия.

Рис. 17. Мягкая потеря устойчивости равновесия

Б. Перед тем как установившийся режим теряет устойчивость, область притяжения этого режима становится очень малой, и всегда присутствующие случайные возмущения выбрасывают систему из этой области еще до того, как область притяжения полностью исчезает.

Рис. 18. Жесткая потеря устойчивости равновесия

Этот вид потери устойчивости называется жесткой потерей устойчивости. При этом система уходит со стационарного режима скачком (см. рис. 18) и перескакивает на иной режим движения. Этот режим может быть другим устойчивым стационарным режимом, или устойчивыми колебаниями, или более сложным движением.

Установившиеся режимы движения получили в последние годы название аттракторов, так как они "притягивают" соседние режимы (переходные процессы), [Аттрактор, т. е. притягатель, — это притягивающее множество в фазовом пространстве. Аттракторы, отличные от состояний равновесий и строго периодических колебаний, получили название странных аттракторов и связываются с проблемой турбулентности.]

Существование аттракторов с экспоненциально расходящимися фазовыми кривыми на них и устойчивость такого рода явлений были установлены в самом начале шестидесятых годов в работах С. Смейла, Д. В. Аносова и Я. Г. Синая по структурной устойчивости динамических систем.

Независимо от этих теоретических работ метеоролог Лоренц в 1963 г. описал наблюдавшийся им в численных экспериментах по моделированию конвекции аттрактор в трехмерном фазовом пространстве с разбегающимися по нему в разные стороны фазовыми кривыми (рис. 19) и указал на связь этого явления с турбулентностью.

Рис. 19. Хаотический аттрактор

В работах Аносова и Синая экспоненциальное разбегание было установлено, в частности, для движения материальной точки по поверхности отрицательной кривизны (пример такой поверхности — седло). Первые применения теории экспоненциального разбегания к изучению гидродинамической устойчивости опубликованы в 1966 г.

Движение жидкости можно описать как движение материальной точки по искривленной бесконечномерной поверхности. Кривизна этой поверхности по многим направлениям отрицательна, что приводит к быстрому разбеганию траекторий, т. е. к плохой предсказуемости течения по начальным условиям. В частности, из этого вытекает практическая невозможность долгосрочного динамического прогноза погоды: для предсказания всего на 1 — 2 месяца вперед нужно знать начальные условия с погрешностью 10-5 от погрешности предсказания.

Вернемся, однако, к режиму, установившемуся после потери устойчивости равновесного состояния, и предположим, что этот режим — странный аттрактор (т. е. не равновесие и не предельный цикл).

Перейти на страницу:

Похожие книги

Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература