Приведенная выше формула индекса товарооборота называется агрегатной (от лат. aggrega – «присоединяю»). Агрегатными называются индексы, числители и знаменатели которых представляют собой суммы, произведения или суммы произведений уровней изучаемого статистического явления. Агрегатная формула индекса – основная и наиболее распространенная формула экономических ин
дексов. Агрегатная формула индекса показывает относительное изменение исследуемого экономического процесса и абсолютные размеры этого изменения.
Расчет агрегатного индекса цен по данной формуле был предложен немецким экономистом Г. Пааше, поэтому его принято называть индексом Пааше.
3. Веса агрегатных индексов цен и физического объема продукции
Агрегатная формула индекса товарооборота показывает, что его величина зависит от двух явлений, от двух переменных величин: физического объема товарооборота, т. е. количества проданных товаров, и цены за каждую единицу реализованных товаров. Чтобы выявить влияние каждой переменной в отдельности, следует влияние одной из них исключить, т. е. принять ее условно в качестве постоянной, неизменной величины на уровне отчетного или базисного периода. Вопрос о том, какой период принять в качестве постоянной величины, рассмотрим на примере индекса цен и индекса физического объема товарооборота.
Агрегатный индекс цен. Общее изменение цен можно определить, если считать постоянной величиной количество реализованных товаров за отчетный или базисный период. Если для получения индекса цен принимать в качестве весов данные о количестве реализованных товаров за отчетный период, можно получить следующую формулу агрегатного индекса цен:
где
Если примем в качестве весов данные о количестве реализованных товаров в базисном периоде, то формула агрегатного индекса цен примет вид:
Полученные формулы агрегатных индексов цен с отчетными и базисными весами не идентичны.
Величина индекса зависит от индексируемых показателей, т. е от величин, изменения которых нам нужно определить, и от сомножителей, которые берутся в качестве весов, а в зависимости от данных, которые были взяты в качестве весов – это данные базисного или отчетного периодов, получают два разных индекса.
Первый индекс показывает изменение цен отчетного периода по сравнению с базисным по продукции, проданной в отчетном периоде, и фактическую экономию от снижения цен.
Другой индекс показывает, насколько поменялись цены в отчетном периоде по сопоставлении с базисными, но только по продукции, которая была реализована в базисном периоде, и экономию, которую можно было получить в результате снижения цен.
Абсолютная фактическая экономия от снижения цен в отчетном периоде определяется следующим образом:
Абсолютная условная экономия в базисном периоде:
Для вычисления индекса цен необходимо сопоставить стоимость товаров, реализованных в отчетном периоде по ценам отчетного периода, со стоимостью этих же товаров, но по ценам базисного периода.
Агрегатный индекс цен представляет собой дробь, числитель и знаменатель которой состоят из двух сомножителей. Один из них является переменной индексируемой величиной (p1
и p0 ). а второй принимается условно в качестве постоянной величины – веса индексаАгрегатный индекс физического объема товарооборота
Неизменные цены всегда только цены базисного периода. Применение в качестве весов неизменных цен дает возможность получить правильное представление о динамике физического объема товарооборота.
В индексе физического объема сомножитель индексируемого показателя берется на уровне базисного периода.
Формула
где Σ
Σ
Абсолютное изменение физического объема вычисляется как разность между числителем и знаменателем индекса Σ
Постоянные и переменные веса агрегатных индексов
Если индексы вычисляются за несколько периодов, то для всех них могут быть приняты одни и те же веса – индексы с постоянными весами, или же для каждого периода свои веса – индексы с переменными весами.
Теоретически возможны четыре типа индексов.
1. Общие базисные индексы цен с постоянными (базисными) весами:
2. Общие базисные индексы цен с переменными (отчетными) весами:
3. Общие цепные индексы цен с постоянными весами: