Согласно методу наименьших квадратов
минимизируется квадрат отклонения наблюдаемых значений результативного показателя yi(i= 1, 2, ..., п) от модельных значений yi = f(хi), где хi значение вектора аргументов в i – м наблюдении:Σ(yi – f(хi)2 → min,
Получаемая регрессия называется среднеквадратической.
Согласно методу наименьших модулей, минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений:
y
i= f (хi)И получаем среднеабсолютную медианнуюрегрессию:
Регрессионный анализ
– это метод статистического анализа зависимости случайной величины у от переменных хj-(j=1, 2, ...,k), рассматриваемых в регрессионном анализе как неслучайные величины, независимо от истинного закона распределения хj.