В экспериментах, выполненных на данный момент, маятник не показал никаких признаков кручения при измерении с точностью до одной десятой части миллионных долей градуса. Размещая маятник все ближе к дискам, исследователи исключили существование измерений, радиус которых больше 40 микрон. В своих будущих экспериментах Адельбергер намерен проверить закон обратных квадратов на еще меньших масштабах, доведя верхнюю оценку до 20 микрон. Адельбергер считает, что это не предел. Но чтобы провести измерения на еще меньших масштабах, необходим другой технологический подход.
Адельбергер считает гипотезу о больших дополнительных измерениях революционной, но замечает, что это не делает ее истинной.[248] Нам необходимы новые тактики не только для исследования вопроса о больших измерениях, но также и для того, чтобы найти ответы на более общие вопросы, касающиеся существования дополнительных измерений и истинности теории струн.
Таково положение дел на сегодня — множество различных идей, из которых мы обсудили только небольшую горстку, и недостаточно сенсационные результаты, чтобы о них говорить. Заглядывая в будущее, Шамит Качру, например, надеется, что ряд экспериментов, планируемых или еще не придуманных, предоставит много возможностей увидеть что-то новое. Однако он признает возможность и менее радужного сценария, предполагающего, что мы живем в разочаровывающей Вселенной, дающей не так уж много эмпирических подсказок. «Если мы ничего не узнаем из космологии, ничего из экспериментов по ускорению частиц и ничего не извлечем из лабораторных экспериментов, тогда мы попросту застряли», — говорит Качру. Хотя он рассматривает такой сценарий как маловероятный, поскольку подобная ситуация не характерна ни для теории струн, ни для космологии, он замечает, что недостаток данных будет влиять аналогичным образом на другие области науки.[249]
Что мы будем делать дальше, после того как с пустыми руками достигнем конца этого отрезка пути? Окажется ли это для нас еще большим испытанием, чем поиск гравитационных волн в КМФ или бесконечно малых отклонений при измерениях на крутильных весах, в любом случае это будет испытанием нашего интеллекта. Каждый раз, когда происходит нечто подобное, когда каждая хорошая идея развивается не так, как хотелось бы, а каждая дорога приводит в тупик, вы или сдаетесь или пытаетесь придумать другие вопросы, на которые можно постараться найти ответы.
Эдвард Виттен, который, как правило, консервативен в своих заявлениях, смотрит в будущее с оптимизмом, чувствуя, что теория струн является слишком хорошей, чтобы не быть правдой. Хотя он признает, что в ближайшее время будет трудно точно определить, где мы находимся. «Чтобы проверить теорию струн, на нашу долю, вероятно, должно выпасть большое счастье, — говорит он. — Оно может звучать, как звучит тонкая струна, на которой записаны чьи-то мечты о теории всего, почти такая же тонкая, как сама космическая струна. Но, к счастью, в физике существует много способов поймать удачу».[250]
У меня нет возражений против этого утверждения, и я склонен согласиться с Виттеном, потому что считаю это мудрой политикой. Но если физики решат, что удача отвернулась от них, они, возможно, захотят обратиться к своим коллегам-математикам, которые с удовольствием возьмут на себя часть решения этой задачи.
Истина, красота и математика
Насколько далеко могут зайти исследователи в своих попытках изучить скрытые измерения Вселенной при отсутствии физических доказательств? Аналогичный вопрос можно задать и струнным теоретикам, пытающимся создать всеобъемлющую теорию природы, не опираясь на обратную связь с экспериментом. Это похоже на исследование огромной темной пещеры с помощью только колеблющегося пламени свечи. Хотя некоторым исследования в таких обстоятельствах могут показаться чистым безумием, подобная ситуация далеко не беспрецедентна в истории науки. На ранних этапах создания теории периоды блуждания во тьме — скорее правило, чем исключение, особенно когда речь идет о развитии и продвижении широкомасштабных идей. На подобных этапах, когда нет экспериментальных данных, на которые можно опереться, математическая красота — это все, что может служить нам путеводной нитью.
Поль Дирак «называл математическую красоту единственным критерием для выбора пути движении вперед в теоретической физике», — писал физик Питер Годдар.[251] Иногда такой подход полностью себя оправдывает, как это было в случае прогноза Дирака о существовании позитрона (как электрона с положительным зарядом), что стало возможным только потому, что математическое рассуждение навело его на мысль, что такие частицы должны существовать. Действительно, спустя несколько лет позитрон был открыт, подтвердив тем самым его веру в математику.