Читаем Теория струн и скрытые измерения Вселенной полностью

Калибровочная теория– теория поля, например Стандартная модель, в которой симметрии калиброваны. Если конкретная симметрия калибрована (в этом случае ее называют калибровочной симметрией), то эту симметрию можно применить к полю в разных точках пространства-времени по-разному, и при этом физика не изменится. Если симметрии калиброваны, то в теорию можно вводить особые поля, называемые калибровочными полями, так что физика остается инвариантной.

Касательная– наилучшее линейное приближение к кривой в данной точке на этой кривой. Это же определение справедливо для многомерных кривых и их касательных.

Касательное расслоение– частный тип расслоения, осуществляемый путем присоединения касательного пространства к каждой точке многообразия. Касательное пространство содержит все векторы, касательные к многообразию в этой точке. Например, если многообразие является двухмерной сферой, то касательное пространство представляет собой двухмерную плоскость, которая содержит все касательные векторы. Если многообразие является трехмерным объектом, то касательное пространство также будет трехмерным (см. Расслоение).

Квадратное уравнение– уравнение второго порядка вида ax 2 +bx+c=0.

Квантовая геометрия– вариант геометрии, по замыслу его создателей, предназначенный для реалистичных описаний физических явлений на ультрамикроскопических масштабах, где квантовые эффекты становятся существенными.

Квантовая гравитация– давно ожидаемая теория, которая смогла бы объединить квантовую механику и общую теорию относительности и обеспечить микроскопическое, или квантовое, описание гравитации, сравнимое с теми описаниями, которые уже имеются для трех других сил. Теория струн представляет собой попытку создания теории квантовой гравитации.

Квантовая механика– набор законов, определяющих поведение Вселенной на атомных масштабах. Квантовая механика содержит, среди прочего, положение о том, что частица может быть эквивалентно описана как волна, так и наоборот. Другим центральным понятием является то, что в некоторых ситуациях физические величины, такие как энергия, импульс и заряд, принимают только дискретные значения (квантуются), а не любые возможные.

Квантовая теория поля– математическая модель, объединяющая квантовую механику и теорию поля. Сегодня квантовые теории поля служат главной теоретической основой физики элементарных частиц.

Квантовые флуктуации– случайные колебания на субмикроскопических масштабах, обусловленные квантовыми эффектами, например принципом неопределенности.

Кварк– класс элементарных, субатомных частиц, из которых, в частности, построены протоны и нейтроны. Считается, что всего существует шесть различных кварков. Кварки, в отличие от лептонов, участвуют в сильных взаимодействиях.

Класс Черна– набор фиксированных свойств, или инвариантов, которые используют, чтобы охарактеризовать топологию комплексных многообразий. Число классов Черна для конкретного многообразия равно числу комплексных измерений. Последний (или «верхний») класс Черна равен эйлеровой характеристике. Классы Черна названы по имени геометра Ч. Ш. Черна, который ввел это понятие в 1940-х годах.

Классическая физика– набор физических законов, сформулированных, главным образом, до XX столетия, который не включает принципы квантовой механики.

Компактификация– сворачивание пространства таким образом, что оно становится компактным, или имеющим конечную протяженность. В теории струн различные способы сворачивания, или компактификации, дополнительных измерений приводят к различной физике.

Компактное пространство– множество, которое является замкнутым и ограниченным, то есть содержащим в себе свою границу и имеющим конечную меру(длину, площадь, объем и т. п.). Сфера является компактной, в то время как бесконечная плоскость – нет.

Комплексное многообразие– многообразие, которое можно описать математически с помощью комплексных координат – его обычная или действительная размерность вдвое больше его комплексной размерности. Все комплексные многообразия являются также действительными многообразиями четной размерности. Однако не все действительные многообразия четной размерности являются комплексными многообразиями, поскольку в некоторых случаях невозможно последовательно описать полное многообразие комплексными числами (см. Многообразие).

Комплексные числа– числа вида a + bi, где aи b– действительные числа, a i– (-1). Комплексные числа можно разбить на две составляющие, причем aназывают действительной частью, а b– мнимой.

Конифолд– сингулярность, имеющая коническую форму. Сингулярности этого рода обычно встречаются в многообразиях Калаби-Яу.

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука