Читаем Теория струн и скрытые измерения Вселенной полностью

Геометрия, несмотря на весьма насыщенную историю и впечатляющие достижения, которыми она может похвастаться на сегодняшний день, не является завершенным произведением, она по-прежнему развивается, постоянно открывая заново саму себя. Одним из последних нововведений в геометрии, внесшим определенный вклад в теорию струн, стало создание геометрического анализа– подхода, который ярко проявил себя только в последние десятилетия. Основной идеей этого подхода является использование мощных методов математического анализа (частью которого является дифференциальное исчисление) для интерпретации геометрических понятий и, напротив, использование геометрической интуиции для интерпретации понятий анализа. Едва ли это новшество станет последним в геометрии – как не стали последними в истории геометрии те нововведения, о которых мы уже говорили. Тем не менее геометрический анализ уже достиг весьма значительных успехов.

К работе в этой области я приступил в 1969 году, учась на первом курсе аспирантуры в Беркли. Для меня лично все началось с необходимости найти книгу для чтения во время рождественских каникул. Не проявив интереса к четырем наиболее продаваемым книгам того года – «Случай портного», «Крестный отец», «Машина любви» и «Штамм “Андромеда”», я остановился на книге, название которой было куда менее популярным – «Теория Морса» американского математика Джона Милнора. Меня особенно заинтересовала глава этой книги, посвященная топологии и кривизне, в которой разбиралось утверждение, что локальная кривизна заметно влияет на геометрию и топологию. С тех пор я постоянно возвращаюсь к этому утверждению, поскольку локальная кривизна поверхности определяется путем взятия производных по этой поверхности. Иными словами, определение кривизны требует использования методов анализа. Исследование влияния кривизны на геометрию, таким образом, составляет самую сущность геометрического анализа.

Не имея рабочего кабинета, в те дни я практически жил в математической библиотеке Беркли. Ходят слухи, будто первой моей целью по прибытию в Соединенные Штаты стало посещение этой библиотеки, а не, скажем, осмотр достопримечательностей Сан-Франциско, на чем, возможно, остановили бы свой выбор другие. И хотя я и не могу вспомнить точно, чем я занимался сорок лет назад, у меня нет оснований сомневаться в достоверности этих слухов. Я имел привычку постоянно прохаживаться по библиотеке, читая каждый журнал, который попадал мне в руки. Однажды, во время упомянутых рождественских каникул, просматривая каталог, я наткнулся на статью Милнора 1968 года, книгу которого я как раз читал в то время. В этой статье, в свою очередь, упоминалась теорема Александре Прайсмана, которая привлекла мое внимание. И поскольку у меня не было каких-либо других занятий (в то время большинство моих коллег разъехались на каникулы), я решил посмотреть, не смогу ли я доказать что-либо, относящееся к теореме Прайсмана.

В своей теореме Прайсман рассмотрел две нетривиальные петли, Аи В, на заданной поверхности. Петлей в топологии называется кривая, начинающаяся в определенной точке поверхности и неким образом охватывающая эту поверхность, возвращаясь в конце концов в ту же точку. Нетривиальнаяозначает в данном контексте, что эту петлю нельзя стянуть в точку, не отрывая ее от поверхности. Иными словами, существует некая преграда, не дающая петле стянуться в точку: так, например, петлю, продетую через дырку бублика, можно стянуть в точку, только разрезав этот бублик (после этого петля уже не будет находиться наповерхности, а бублик, с точки зрения топологии, перестанет быть бубликом). Если проследовать вдоль петли А, а затем вдоль петли В, то результирующий путь будет представлять собой новую петлю В Ч А. Напротив, если сначала обойти вокруг петли В, а потом вокруг петли А, возникнет петля А Ч В. Прайсман доказал, что в пространстве, кривизна которого всюду отрицательна – подобно внутренней поверхности седла, – петли В Ч Аи А Ч Вможно непрерывно преобразовать одну в другую путем изгиба, растяжения и сжатия только в одном особом случае: а именно, если петлю, кратную петле А(такую петлю можно получить, обойдя вокруг петли Аодин или целое число раз), можно плавно преобразовать в петлю, кратную петле В. В этом частном случае петли Аи Вносят название коммутирующих, точно так же, коммутирующими являются операции сложения и умножения (2 + 3 = 3 + 2 и 2 Ч 3 = 3 Ч 2), тогда как вычитание и деление некоммутативны (2 – 3 /= 3 – 2 и 2/3 /= 3/2).

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука