Читаем Теория струн и скрытые измерения Вселенной полностью

Дифференциальные уравнения используются везде, где встречаются бесконечно малые изменения переменных, в том числе и в физических законах. Одним из наиболее важных и сложных классов этих уравнений являются так называемые дифференциальные уравнения в частных производных, описывающие изменение некоей функции при изменении сразу нескольких переменных. При помощи дифференциальных уравнений в частных производных можно предсказать поведение данной, функции не только, например, во времени, но и при изменении других переменных, например при перемещении в пространстве вдоль осей x, yили z. Подобные уравнения дают возможность заглянуть в будущее и увидеть возможную эволюцию системы; без них физика была бы лишена своей предсказательной силы.

Геометрия тоже не может обойтись без дифференциальных уравнений. Мы используем их, чтобы определить кривизну объекта и вычислить ее изменение при переходе от точки к точке. Именно это делает геометрию необходимой для физических приложений. Приведем простой пример: ответ на вопрос, будет ли катящийся мяч двигаться с ускорением, то есть будет ли его скорость изменяться во времени, напрямую зависит от кривизны траектории мяча. Это только один пример тесной связи кривизны с физическими понятиями. По этой причине и геометрия – «наука о пространстве», включающая в себя все, что связано с кривизной, – играет важную роль во многих областях физики.

Фундаментальные законы физики являются локальнымив том смысле, что они всегда описывают поведение той или иной физической величины не во всем пространстве, а в отдельных, локальных, областях. Это справедливо даже для общей теории относительности, стремящейся описать кривизну всего пространственно-временного континуума в целом. В конце концов, и производные, фигурирующие в дифференциальных уравнениях, тоже берутся именно в отдельных точках. Все это создает проблему для физиков. Как сказал математик UCLA Роберт Грин: «Итак, исходя из локальной информации, такой как кривизна, необходимо узнать строение объекта как целого. Вопрос состоит в том, как это сделать»[25].

Рассмотрим для начала кривизну поверхности Земли. Поскольку провести измерения всего земного шара сразу крайне сложно, Грин предложил рассмотреть вместо этого следующую картину. Представим себе собаку, сидящую на прикрепленной к столбу цепи во дворе. Если у собаки есть возможность перемещаться хотя бы в небольших пределах, она сможет узнать, какую кривизну имеет тот участок земли, который ограничен длиной цепи. В данном случае предполагается, что эта кривизна положительна. Представим теперь, что в каждом дворе мира живет подобная собака, привязанная к столбу, и каждый из участков земли вокруг этих столбов имеет положительную кривизну. Сведя воедино все эти данные о локальной кривизне, можно сделать вывод, что топологически данная планета должна иметь сферическую форму.

Рис. 3.2.Графики, иллюстрирующие движение объекта вдоль определенной траектории. Скорость – величина, показывающая, насколько быстро положение объекта изменяется с течением времени, может быть получена путем взятия производной по кривой перемещения. Производная определяется наклоном кривой в данной точке и численно равна скорости в соответствующий момент времени. Ускорение, величина которого показывает, как изменяется скорость с течением времени, можно, в свою очередь, получить, взяв производную по кривой зависимости скорости от времени. Значение ускорения в определенный момент времени определяется наклоном кривой в соответствующей точке

Конечно, существуют и более строгие методы определения кривизны участка поверхности, не основанные на субъективных ощущениях привязанной на нем собаки. К примеру, если цепь имеет длину rи собака движется вокруг столба так, что ее цепь все время натянута, то в случае плоского пространства (плоской Земли) длина описываемой собакой окружности будет равна точно 2 р r. На поверхности сферы, обладающей положительной кривизной, длина окружности будет несколько меньше, чем 2 р r, из-за того что сферическая поверхность как бы «наклоняется вниз» при движении в любом из возможных направлений; в том же случае, когда столб находится на горном перевале или в седловой точке, обладающей отрицательной кривизной, имеющей наклон вниз в одних направлениях и наклон вверх в других, длина окружности будет несколько больше, чем 2 р r. Таким образом, наша задача сводится к тому, чтобы определить кривизну каждого конкретного участка, измерив расстояния, проходимые по кругу каждой из собак, – и затем свести эти результаты воедино.

Именно этим и занимается дифференциальная геометрия. Кривизна в дифференциальной геометрии определяется локально, то есть в отдельных точках, однако полученная таким образом информация применяется для того, чтобы сделать выводы о пространстве в целом. «Кривизна управляет топологией» – наш основной девиз. А нашим основным инструментом являются дифференциальные уравнения.

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука