Читаем Теория струн и скрытые измерения Вселенной полностью

Сфера, к примеру, имеет глобальную симметрию– названную так, поскольку она работает относительно любой точки сферы. Одним из типов симметрии в данном случае является вращательная инвариантность, означающая, что при любом повороте сфера совпадает сама с собой. Симметрия кэлерова многообразия, с другой стороны, более локальна, поскольку она относится только к первым производным метрики. Однако благодаря методам дифференциальной геометрии, позволяющим осуществить интегрирование по всему многообразию, можно увидеть, что условие кэлеровости и связанная с ним симметрия подразумевают особое отношение между различными точками. Таким образом, симметрия, изначально охарактеризованная как локальная, при помощи интегрального исчисления приобретает более глобальную роль связующего звена между различными точками многообразия.

Основная проблема данного типа симметрии относится к особой разновидности преобразования, называемой параллельным переносом. Параллельный перенос, как и операция поворота, является линейным преобразованием: это преобразование подразумевает такое перемещение векторов вдоль определенной траектории на поверхности или многообразии, при котором сохраняются не только длины всех векторов, но и углы между любой парой векторов. В тех случаях, когда параллельный перенос сложно представить наглядно, точный путь перемещения векторов можно рассчитать при помощи метрики, решая дифференциальные уравнения.

На плоской, евклидовой поверхности все очень просто: нужно только сохранять направление и длину каждого вектора. На искривленных поверхностях и для произвольных многообразий условие постоянства длин и углов сохраняется, хотя и несколько усложняется по сравнению с евклидовым пространством.

Особенность кэлерова многообразия состоит в следующем: если при помощи операции параллельного переноса переместить вектор Vиз точки Pв точку Qвдоль заданной траектории, то результатом этого перемещения станет новый вектор W 1. Применив к вектору операцию поворота на 90 градусов (J-операцию), мы получим новый вектор JW 1. С тем же успехом можно сначала применить к вектору Vоперацию поворота (J-операцию), в результате которой возникнет новый вектор JV,по-прежнему начинающийся в точке P. Если после этого параллельно перенести вектор JVв точку Qи полученный вектор назвать W 2, то в случае кэлерова многообразия векторы JW 1и W 2будут идентичны вне зависимости от пути перемещения между точками Pи Q. Можно сказать, что на кэлеровом многообразии J-операция инвариантна относительно параллельного переноса. Для комплексных многообразий в общем случае это не так. Можно сформулировать это условие и в другом виде: на кэлеровом многообразии параллельный перенос вектора с последующим его поворотом аналогичен повороту вектора с последующим параллельным переносом. Эти две операции коммутируют – поэтому не имеет значения, в каком порядке их выполнять. В общем случае это не так, как наглядно объяснил Роберт Грин: «Открыть дверь и затем выйти из дому – это далеко не то же самое, что выйти из дому и лишь затем открыть дверь».

Основная идея параллельного переноса проиллюстрирована на рис. 4.3 для поверхности с двумя вещественными измерениями или одним комплексным (поверхность с большим числом измерений нарисовать проблематично). Впрочем, этот случай скорее тривиален, поскольку число возможных направлений поворота ограничено числом два: влево и вправо.

Однако уже для двух комплексных измерений (четырех вещественных) число векторов определенной длины, перпендикулярных любому заданному вектору, бесконечно велико. Эти векторы образуют касательное пространство, которое в двухмерном случае можно представить как огромный кусок фанеры, лежащий на верхушке баскетбольного мяча. В этом случае знание того, что необходимый нам вектор перпендикулярен некоему другому, известному нам, едва ли заметно упростит его нахождение – если только многообразие, которому он принадлежит, не является кэлеровым. Для кэлерова многообразия, зная вектор, полученный при повороте на 90 градусов (J-преобразовании) в одной из точек многообразия, можно точно предсказать величину и направление подобных векторов в любой другой точке, поскольку параллельный перенос дает возможность переместить этот вектор из первой точки во вторую.

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука
Схватка гигантов
Схватка гигантов

Аннотация издательства : Первый том сериала "Морские битвы Первой мировой" посвящен великому противостоянию английского и немецкого линейных флотов, завершившемуся грандиозным Ютландским боем. Это сражение стало кульминацией невидимой борьбы Джона Арбетнота Фишера и Альфреда фон Тирпица – создателей Гранд Флита и Флота Открытого Моря – и адмиралов Джеллико, Битти, Шеера и Хиппера – их командующих. В книге подробно рассмотрены боевые действия крейсерских эскадр и линейных крейсеров, сражения в Северном море и, наконец, те несколько часов 31 мая 1916 года, когда исполинские флоты встретились в открытом бою.Книга снабжена большим справочным аппаратом и станет настоящим подарком для всех любителей военной истории.

Александр Геннадьевич Больных

Документальная литература / История / Технические науки / Образование и наука