Читаем Теория струн и скрытые измерения Вселенной полностью

Эта картина, конечно, является весьма грубой и схематичной и ничего не говорит нам о подлинной геометрии этого компактифицированного шестимерного мира. Возьмем, к примеру, обычную сферу, представляющую собой двухмерную поверхность, и мысленно сожмем ее в точку, то есть превратим ее в нульмерный объект. Таким образом, мы компактифицировали два измерения, превратив их в ничто. Можно попытаться таким же образом свести десять измерений к четырем, сжимая теперь уже шестимерную сферу a 2 +b 2 +c 2 +d 2 +e 2 +f 2 =1, но в качестве геометрии дополнительных измерений этот вариант не пройдет; уравнения теории струн требуют строго определенной структуры шестимерного пространства, и обычная сфера этим требованиям не соответствует.

Было ясно, что требовалась более сложная форма, и после успеха Грина и Шварца с нарушением четности задача нахождения этой формы вышла на первый план. Как только физикам стал бы известен точный вид многообразия, в которое сворачиваются дополнительные шесть измерений, они, наконец, смогли бы перейти от слов к делу.

Следующий шаг был предпринят в 1984 году, когда Грин, Шварц и Питер Вест из Кингс-Колледжа заинтересовались K3-поверхностями – широким классом комплексных многообразий, который изучался математиками уже более столетия, хотя внимание именно физиков K3 привлекли, когда мои доказательства гипотезы Калаби показали, что эти поверхности могут поддерживать риччи-плоскую метрику. «Я понял, что компактное пространство должно быть риччи-плоским, для того чтобы космологическая постоянная пространства более низкой размерности, в котором мы живем, не была положительной – как и требовали все теории того времени», – вспоминает Шварц.[55] В свете последующего открытия темной энергии, предполагающей наличие чрезвычайно малой, но все же положительной космологической постоянной, пришлось разработать более сложные варианты теории, предполагающей возникновение очень малой космологической постоянной в нашем четырехмерном мире из компактных риччи-плоских пространств, – об этом пойдет речь в десятой главе.

Поверхность K3, обязанная своим названием горе K2 и трем математикам, исследовавшим геометрию подобных пространств, – Эрнсту Куммеру, упоминавшемуся ранее Эриху Кэлеру и Кунихико Кодайра, – была выбрана для предварительной проверки несмотря на наличие у нее только четырех вещественных (или двух комплексных) измерений вместо требуемых шести, во многом благодаря тому, что коллеги убедили Грина, Шварца и Веста в отсутствии аналогов этих многообразий более высокой размерности. Однако, как говорит Грин: «Я совершенно уверен в том, что мы нашли бы способ расставить все по местам… даже если бы в то время и не получили этой информации [о существовании шестимерных аналогов риччи-плоских K3 поверхностей]».[56] «То, что исследование было начато с испытанных K3 поверхностей, – добавляет Шварц, – было обусловлено совсем не желанием найти подлинный вид компактификации. Мы просто хотели поиграть, посмотреть, что мы получим в результате и как это связано с сокращением аномалий».[57] С тех пор поверхности K3 имеют неоценимое значение для струнных теоретиков, исполняя роль «игрушечных моделей» для компактификации. Они также незаменимы при исследовании двойственностей в теории струн, о которых пойдет речь в следующей главе.

Примерно в то же время, в 1984 году, физик Эндрю Строминджер, сейчас работающий в Гарварде, а тогда – в Институте перспективных исследований (ИПИ) в Принстоне, объединил свои усилия с физиком-теоретиком Филиппом Канделасом, сейчас работающим в Оксфорде, а тогда – в Техасском университете, для того чтобы определить класс шестимерных пространств, удовлетворяющий строгим условиям теории струн. Им было известно, что внутренние пространства этих шестимерных многообразий должны быть компактными, чтобы иметь возможность перейти от десяти к четырем измерениям, а кривизна должна удовлетворять как уравнениям теории гравитации Эйнштейна, так и требованиям симметрии, налагаемым теорией струн. Эти исследования в конце концов привели их и еще двоих их коллег – Гари Горовица из Калифорнийского университета и Виттена – к тем пространствам, существование которых я установил, доказав гипотезу Калаби, хотя Виттен пришел к этим многообразиям собственным путем. «Одной из важнейших особенностей открытий в современной науке является то, что физики и математики по совершенно разным причинам зачастую приходят к одним и тем же структурам, – делится своим наблюдением Строминджер. – Порой физики обгоняют математиков, порой математики обгоняют физиков. В данном случае математики оказались впереди. Им удалось понять важность этих пространств раньше нас».[58]

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука
Схватка гигантов
Схватка гигантов

Аннотация издательства : Первый том сериала "Морские битвы Первой мировой" посвящен великому противостоянию английского и немецкого линейных флотов, завершившемуся грандиозным Ютландским боем. Это сражение стало кульминацией невидимой борьбы Джона Арбетнота Фишера и Альфреда фон Тирпица – создателей Гранд Флита и Флота Открытого Моря – и адмиралов Джеллико, Битти, Шеера и Хиппера – их командующих. В книге подробно рассмотрены боевые действия крейсерских эскадр и линейных крейсеров, сражения в Северном море и, наконец, те несколько часов 31 мая 1916 года, когда исполинские флоты встретились в открытом бою.Книга снабжена большим справочным аппаратом и станет настоящим подарком для всех любителей военной истории.

Александр Геннадьевич Больных

Документальная литература / История / Технические науки / Образование и наука