Читаем Теория струн и скрытые измерения Вселенной полностью

Иными словами, преобразование, отвечающее вращательной симметрии, изменило топологию многообразия Калаби-Яу, оставив неизменной сопутствующую ей конформную теорию поля. В результате теперь двум многообразиям Калаби-Яу с совершенно различной топологией можно было сопоставить одну и ту же физическую теорию. «Это, коротко говоря, и называется зеркальной симметрией», – поясняет Гепнер.[97] Используя более общее понятие, можно также определить это свойство как дуальность, смысл которой состоит в том, что два объекта, с виду не имеющие отношения друг к другу, в данном случае – два многообразия Калаби-Яу, тем не менее порождают одну и ту же физику.

Первая статья Грина и Плессера по теме зеркальной симметрии описывала десять так называемых зеркальных партнеров, или зеркальных многообразий, обнаруженных среди нетривиальных и не являющихся совершенно плоскими многообразий Калаби-Яу, начиная с простейшего случая – трехмерной поверхности пятого порядка. Наряду с еще девятью примерами в этой статье содержалась формула, дающая возможность получить зеркальные пары для любой модели Гепнера, – на сегодня число подобных пар составляет сотни, если не тысячи.[98]

Зеркальные многообразия имеют ряд интереснейших свойств, проявляющихся при сопоставлении объектов, которые ранее казались не имеющими отношения друг к другу. К примеру, Грин и Плессер обнаружили, что одно из многообразий Калаби-Яу может иметь 101 вариант формы и только один вариант размера; зеркальное же многообразие, напротив, будет иметь 101 вариант размера и единственный вариант формы. Многообразия Калаби-Яу могут иметь дырки различной размерности – как нечетной, так и четной. Грину и Плессеру удалось обнаружить любопытное взаимоотношение между зеркальными парами: число дырок нечетной размерности в многообразии равно числу дырок четной размерности в его зеркальном партнере, и наоборот. «Это означает, что общее число дырок… в обоих многообразиях одинаково, даже несмотря на то, что замена дырок четной размерности на дырки нечетной размерности приводит к совершенно различным формам и геометрическим структурам», – замечает Грин.[99]

Рис. 7.1.Брайан Грин (© Андреа Кросса)

Рис. 7.2.Ронен Плессер (Duke Photography)

Рис. 7.3.Двойной тетраэдр, имеющий пять вершин и шесть граней, и треугольная призма, имеющая шесть вершин и пять граней, являются простыми примерами зеркальных многообразий. Эти привычные всем многогранники, в свою очередь, можно использовать для создания многообразия Калаби-Яу и его зеркальной пары, причем число вершин и граней многогранника будет определять внутреннюю структуру соответствующего многообразия Калаби-Яу. Подробности процедуры «конструирования» многообразия носят скорее технический характер, выходящий за рамки этого обсуждения

Это еще не объясняет «зеркальный» аспект обнаруженной симметрии, который проще проиллюстрировать при помощи топологии. Было установлено, например, что многообразия Калаби-Яу и их зеркальные партнеры имеют эйлеровы характеристики противоположных знаков, что говорит о существенном различии в их топологиях, хотя и несколько опосредованно, поскольку эти числа сами по себе дают только незначительную часть информации о пространстве и, как уже было показано ранее, многие пространства, заметно отличающиеся друг от друга, такие как куб, тетраэдр и сфера, могут иметь одинаковые эйлеровы характеристики. Можно показать это и более строго, представив эйлеровы характеристики в виде сумм и разностей целых чисел, называемых числами Бетти, которые содержат более полную информацию о внутренней структуре пространства.

Любой объект имеет  n+ 1 чисел Бетти, где  n– размерность объекта. Таким образом, нульмерная точка имеет одно число Бетти; одномерная окружность – два числа Бетти; двухмерная поверхность, например сфера, – три числа Бетти и т. д. Первое число Бетти обозначается как b 1второе – как  b 2и последнее – как b kгде к-ечисло Бетти представляет собой количество независимых k-мерных циклов, или петель, которые могут быть обернуты вокруг пространства или многообразия или пропущены через рассматриваемое пространство или многообразие. Подробнее о циклах будет рассказано далее.

Рис. 7.4.Поверхности (речь идет об ориентируемых или двухсторонних поверхностях) можно различать топологически, сравнивая их числа Бетти. В целом число Бетти означает число способов, которыми можно провести разрез на двухмерной поверхности, не приводящих к образованию двух отдельных частей. Для сферы подобный разрез невозможен, поэтому ее число Бетти равно нулю. С другой стороны, бублик возможно разрезать двумя различными способами, не разделив его на две отдельные части, как показано на рисунке. Поэтому его число Бетти равно двум

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука
Схватка гигантов
Схватка гигантов

Аннотация издательства : Первый том сериала "Морские битвы Первой мировой" посвящен великому противостоянию английского и немецкого линейных флотов, завершившемуся грандиозным Ютландским боем. Это сражение стало кульминацией невидимой борьбы Джона Арбетнота Фишера и Альфреда фон Тирпица – создателей Гранд Флита и Флота Открытого Моря – и адмиралов Джеллико, Битти, Шеера и Хиппера – их командующих. В книге подробно рассмотрены боевые действия крейсерских эскадр и линейных крейсеров, сражения в Северном море и, наконец, те несколько часов 31 мая 1916 года, когда исполинские флоты встретились в открытом бою.Книга снабжена большим справочным аппаратом и станет настоящим подарком для всех любителей военной истории.

Александр Геннадьевич Больных

Документальная литература / История / Технические науки / Образование и наука