Читаем Теория струн и скрытые измерения Вселенной полностью

Как оказалось, существует не единственный способ введения квантовых поправок. Благодаря зеркальной симметрии для любого многообразия Калаби-Яу можно построить эквивалентный ему с физической точки зрения зеркальный партнер. Многообразия, являющиеся зеркальными партнерами, описываются двумя различными по виду, но эквивалентными по сути вариантами теории струн, типа IIA и типа IIB, которые описывают одну и ту же квантовую теорию поля. Мы можем сделать эти расчеты относительно легко для модели В, где квантовые поправки оказываются равными нулю. Расчет же для модели А, в которой квантовые поправки в нуль не обращаются, практически невозможен.

Примерно через год после выхода статьи Грина и Плессера, внимание математического сообщества привлекло новое открытие в области зеркальной симметрии. Канделасу, Ксении де ла Осса, Полу Грину и Линде Паркс удалось показать, что зеркальная симметрия может оказать помощь при разрешении математических задач, в частности в области алгебраической и нумеративной геометрии, в том числе некоторых из тех, что не поддавались математикам на протяжении десятилетий. Задача, которую рассмотрел Канделас со своими коллегами, носила название задачи трехмерной поверхности пятого порядка и в то время была у всех на слуху. Свое второе название – задача Шуберта – она получила в честь немецкого математика XIX века Германа Шуберта, решившего ее первую часть. Задача Шуберта имеет отношение к определению количества рациональных кривых – то есть кривых рода 0, не имеющих дырок, таких как сфера, – которые можно провести на многообразии Калаби-Яу пятого порядка (шестимерном).

Подобный расчет может показаться весьма странным занятием для того, кто не увлекается нумеративной геометрией, – для тех же, кто работает в этой области, подобная деятельность является вполне привычной. На самом деле задача весьма проста – это не сложнее, чем высыпать на стол конфеты из вазы и сосчитать их. Расчет числа определенных объектов на многообразии и очерчивание круга приложений, в которых полученное число может оказаться полезным, на протяжении столетия или больше были важнейшими задачами для математиков. Число, которое необходимо найти, в конце этого процесса должно оказаться конечным, поэтому поиск нужно ограничить компактными пространствами, небесконечными плоскостями. Если, к примеру, необходимо рассчитать число точек пересечения между двумя кривыми, то в случае наличия точек соприкосновения между кривыми могут возникнуть затруднения. Впрочем, математики, занимающиеся нумеративной геометрией, уже разработали методики, позволяющие разобраться с этими сложностями и получить строго определенное число.

Одна из первых задач такого типа была сформулирована приблизительно в 200 году до нашей эры греческим математиком Аполлонием, которого интересовал следующий вопрос: если даны три окружности, то сколькими способами можно нарисовать четвертую так, чтобы она касалась всех трех одновременно? Ответ на этот вопрос (восемь) может быть получен с помощью линейки и циркуля. Для решения же задачи Шуберта необходимы более сложные вычисления.

В работе над этой задачей математики избрали поэтапный подход, рассматривая за раз только одну степень. Под степенью понимается наивысшая из степеней слагаемых, входящих в многочлен. К примеру, степень полинома 4x 2- 5y 3равна трем, 3 y 4 +4x– семи (степени х 3и y 4складываются), а 2x+3y-4– единице (график этой функции – прямая линия). Итак, задача состояла в том, чтобы выбрать многообразие (в нашем случае речь идет о трехмерной поверхности пятого порядка) и степень (порядок) кривых, количество которых необходимо было подсчитать.

Шуберт решил эту задачу для кривых первого порядка, показав, что на поверхности пятого порядка можно провести ровно 2875 кривых. Почти через сто лет после этого, в 1986 году, Шелдон Кац, в настоящее время работающий в Университете штата Иллинойс, показал, что число кривых второго порядка, подобных окружностям, на той же поверхности равно 609 250. Канделас, де ла Осса, Грин и Паркс, в свою очередь, рассмотрели случай кривых третьего порядка, от которого легко перейти к задаче о числе сфер, которые можно разместить в определенном пространстве Калаби-Яу. В этом им помог прием, основанный на зеркальной симметрии. В то время как решение задачи для многообразия пятого порядка было чрезвычайно сложным, его зеркальный партнер, созданный Грином и Плессером, позволял найти намного более простой путь к решению.

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука
Схватка гигантов
Схватка гигантов

Аннотация издательства : Первый том сериала "Морские битвы Первой мировой" посвящен великому противостоянию английского и немецкого линейных флотов, завершившемуся грандиозным Ютландским боем. Это сражение стало кульминацией невидимой борьбы Джона Арбетнота Фишера и Альфреда фон Тирпица – создателей Гранд Флита и Флота Открытого Моря – и адмиралов Джеллико, Битти, Шеера и Хиппера – их командующих. В книге подробно рассмотрены боевые действия крейсерских эскадр и линейных крейсеров, сражения в Северном море и, наконец, те несколько часов 31 мая 1916 года, когда исполинские флоты встретились в открытом бою.Книга снабжена большим справочным аппаратом и станет настоящим подарком для всех любителей военной истории.

Александр Геннадьевич Больных

Документальная литература / История / Технические науки / Образование и наука