Описанная работа очень полезна для установления таких связей в сознании студентов.
Заключение
По мнению преподавателей, применяющих в обучении семантический конспект, а также студентов, он оказался эффективным средством в самостоятельной работе по закреплению материала, при подготовке к практическим и лабораторным занятиям. Конспект помогает уяснить структуру материала, освещаемого на лекции, выделить и запомнить существенные моменты. При этом «выживаемость» знаний существенно возрастает. Некоторые разделы курса, не представляющие особой трудности, могут быть вынесены на самостоятельное изучение, при этом соответствующие разделы конспекта служат своеобразным планом к этому изучению. Студенты отмечают особую ценность конспекта при подготовке к экзамену, когда из-за обилия информации существует опасность не выделить и не усвоить главное. Регулярно обращаясь к семантическому конспекту в течение семестра (а это не требует сколько-нибудь значительных затрат времени), студент к сессии помнит все высказывания, т.е. мысли, составляющие существо курса, у него готов его каркас, и он быстро наполняет его знаниями, которые не вошли в семантический конспект.
Семантический конспект чрезвычайно полезен и для преподавателя. Во-первых, преподаватель может активно применять конспект в процессе обучения; во-вторых, работа над конспектом дает преподавателю новые более глубокие представления об учебном предмете.
Литература
Атанов Г.А. Газовая динамика. – Киев: Выща школа, 1992.
Атанов Г.А. Моделирование учебной предметной области, или Предметная модель обучаемого // Educational Technology & Society, 4 (1), 2001. – С.111-124. ISSN 1436-4522.
Атанов Г.А. Деятельностный подход в обучении. – Донецк: ЕАИ-пресс, 2001.
Атанов Г.А., Мартынович Н.Н., Семко А.Н., Токий В.В. Программа курса физики как предметная модель обучаемого // Современные проблемы дидактики высшей школы: Сб. избран. трудов Междунар. конф./ Отв. ред. Г.А. Атанов. – Донецк: ДонГУ, 1997. – С. 112-120.
Атанов Г.А., Пустынникова И.Н. Структурирование понятий предметной области с помощью методов представления знаний // Искусственный интеллект. – 1997. – №2. – С. 29-40.
Атанов Г.А., Эфрос Т.И. Система умений в обучении // Современные проблемы дидактики высшей школы: Сб. избран. трудов Междунар. конф./ Отв. ред. Г.А. Атанов. – Донецк: ДонГУ, 1997. – С.100-111.
Бугiр М.К. Математика для економiстiв. – К.: Академiя, 1998.
Карасев А.И., Аксютина З.Н., Савельева Т.И. Курс высшей математики для экономических вузов. – М.: Высшая школа, 1982.
Красс М.С. Математика для экономических специальностей. – М.: Инфра-М., 1999.
Ковтунова И.И. Современный русский язык. – М.: Просвещение, 1976.
Кремер Н.Ш., Путко Б.А., Тришин И.М., Фридман М.Н. Высшая математика для экономистов. – М.: Банки и биржи, ЮНИТИ, 1997.
Ляшенко И.Н., Ляшенко Е.И. Математика для экономистов – Д.: Браво, 1998.
Машбиц Е.И. Психолого-педагогические проблемы компьютеризации обучения. – М.: Педагогика, 1988.
Представление и использование знаний: Пер. с япон. / Под ред. Х. Уэно, М. Исидзука. – М.: Мир, 1989.
Atanov, G.A., Efros, T.I. System of skills in instruction as a part of the learner model // Proc. of the Intern. Conf. on Computer Assistant Learning CAL-97. UK, Exeter, 1997. – P.369-372.
Atanov, G. A., Pustynnikova, I. N. Representation and Structuring of Domain Knowledge by the Semantic Networks and Productions Methods. Proc. of the 8th Intern. PEG Conf.: Meeting the Challenge of the New Technologies. – Sozopol, Bulgaria, 1997. –P. 392–393.
Atanov, G.A. Modeling an Educational Domain // Proc. of the 8 thJoint Conf. on Knowledge-Based Software Engineering. Brno, Czech Republic, 2000. – P. 307-310.
Brown, J., Burton, R. Diagnostic models for procedural bugs in basic mathematical skills //Cognitive Science, № 2, 1978. – P. 155-192.
Self, J. Dynamics of Learner Models // Artificial Intelligence and Education. – Amsterdam: IOS, 1994.
Sleeman, D. Assessing aspects of competence in basic algebra // Intelligent Tutoring Systems. – New York: Academic Press, 1982. – P. 185-199.
Wenger Е. Artificial intelligence and tutoring systems. Computational approaches to the communication of knowledge. – Los Altos: Morgan Kaufmann, 1987.
СТРУКТУРА ПРАКТИЧЕСКИХ ЗАНЯТИЙ ПО ВЫСШЕЙ
МАТЕМАТИКЕ И РАЗВИТИЕ У СТУДЕНТОВ НАВЫКОВ
САМОСТОЯТЕЛЬНОЙ РАБОТЫ
Г.Н. Белоусова
г. Кривой Рог, Криворожский государственный педагогический университет
В настоящее время каждый учитель математики ставит перед собой задачу не только сообщить учащимся определенную сумму знаний, наполнить их память определенным набором формул и теорем, но и научить их думать, развить мышление, творческую инициативу, самостоятельность.