Читаем "Теорія та методика навчання математики, фізики, інформатики. Том-1" полностью

векторная алгебра и аналитическая геометрия;

алгебра линейных операторов и квадратичных форм.

Каждая тематическая рубрика, в свою очередь, разбивается на несколько разделов, имеющих сквозную нумерацию по всему конспекту. Например:

Алгебра матриц:

1. Основные определения, виды матриц;

2. Операции с матрицами;

3. Определители квадратных матриц;

4. Ранг матрицы;

5. Обратная матрица;

Системы линейных алгебраических уравнений (СЛАУ) :

6. СЛАУ , основные определения;

7. СЛАУ , матричный метод решения;

8. СЛАУ , решением методом Крамера;

9. Метод Гаусса решения СЛАУ;

10. Метод Жордана-Гаусса решения СЛАУ;

11. Теорема Кронекера Капели;

12. Однородные СЛАУ;

Векторная алгебра с элементами аналитической геометрии:

13. Геометрические векторы и прямая на плоскости;

14. Операции с векторами в пространстве;

15. Плоскость и прямая в пространстве;

16. Векторное и евклидово пространства;

17. Базис векторного пространства;

18. Линейные формы и выпуклые множества;

Алгебра линейных операторов (ЛО) и квадратичных форм (КФ):

19. Матрица ЛО в эвклидовом пространстве;

20. Собственные векторы и собственные значения ЛО;

21. Канонический вид КФ;

22. Критерий Сильвестра;

23. Кривые второго порядка на плоскости;

24. КФ и кривые второго порядка.

После того как выделена структура конспекта, можно приступать к формулировке высказываний, руководствуясь приведенными выше принципами. При этом очень важно следовать грамматическому принципу.Существуют определенные закономерности построения высказываний, которые обусловлены особенностями логико-грамматического метода [10]. Этот метод основывается на том, что большинство высказываний отчетливо делится на две части. Первая часть, которая представляет собой исходный пункт высказывания, называется темой. Тема высказывания либо уже известна, либо предопределяется контекстом. Вторая часть называется ремой. Она сообщает нечто новое о теме и представляет собой главную цель высказывания. Рема заключает в себе содержание сообщения и является семантическим центром высказывания. Рассмотрим следующий пример:

4.2. Порядок минора равен количеству строк или столбцов в матрице, определителем которой он является.

Здесь темой является « порядок минора», а ремой –«равен количеству строк или столбцов в матрице, определителем которой он является». Это высказывание служит для того, чтобы показать , чему равенпорядок минора матрицы. Его раскрывает рема – « количеству строк или столбцов в матрице, определителем которой он является». Это и есть главная цель и мысль высказывания.

Таким образом, порядок слов в предложении играет определенную роль и не может быть свободным. Если порядок слов изменить, то это может привести к изменению темы и ремы, они взаимно перевоплотятся друг в друга, и коммуникативная цель высказывания также изменится. Особенно важно соблюдать необходимый порядок слов в теоремах, которые задают необходимое или достаточное условие. Например, высказывание

3.29. Если все элементы какого-нибудь ряда матрицы равны нулю, то и определитель этой матрицы равен нулю

представляет собой достаточное условие равенства нулю определителя матрицы. Первая часть высказывания « все элементы какого-нибудь ряда матрицы равны нулю»здесь является темой, а вторая – « определитель этой матрицы равен нулю»– ремой. Между ними существует четкая причинно-следственная связь: из темы следует рема. Если это высказывание переформулировать следующим образом:

Перейти на страницу:

Похожие книги